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ABSTRACT 

 

In semiconductor manufacturing, ensuring the quality and reliability of wafers is critical. 

Object defect detection on wafer maps, which visually represent the spatial distribution of test results 

across a wafer, is a key aspect of this quality control process. Traditional methods of defect detection 

often rely on rule-based algorithms or manual inspection, both of which can be time-consuming and 

prone to errors. This study presents a novel approach leveraging Convolutional Neural Networks 

(CNNs) for automated wafer map defect detection, significantly enhancing accuracy and efficiency. 

CNNs, a class of deep learning models particularly effective in image processing tasks, are 

employed to identify and classify defects in wafer maps. The proposed system involves preprocessing 

wafer map data, training the CNN model on labelled defect datasets, and validating its performance 

against established benchmarks. Our approach includes data augmentation techniques to increase the 

diversity of the training dataset and enhance the model's robustness. 

Experimental results demonstrate that the CNN-based method achieves superior detection 

rates compared to traditional techniques, with a notable reduction in false positives and negatives. 

The model's performance is evaluated using metrics such as precision, recall, and F1-score, 

confirming its efficacy in real-world applications. Additionally, the integration of this automated 

system into the manufacturing pipeline promises to streamline the quality control process, reduce 

inspection time, and minimize human error. 

In conclusion, this study highlights the potential of Convolutional Neural Networks in 

transforming wafer map defect detection, offering a scalable and reliable solution that aligns with the 

advancements in semiconductor manufacturing technology. Future work will focus on expanding the 

model's capabilities to detect a broader range of defect types and further improving its adaptability to 

various wafer manufacturing processes. 
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CHAPTER-1 

 

1.1 INTRODUCTION 

 

In semiconductor manufacturing, the precision and quality of integrated circuits (ICs) are 

paramount, with wafer maps serving as vital tools to visualize and detect defects on 

semiconductor wafers caused by factors like contamination, equipment malfunction, or process 

variation. Traditional methods for defect detection, including rule-based algorithms and manual 

inspection, are becoming increasingly inadequate due to their rigidity, susceptibility to human 

error, and inefficiency in handling the growing complexity and volume of data. Convolutional 

Neural Networks (CNNs) present a transformative solution, leveraging their advanced 

capabilities in image recognition to automatically learn and extract features from raw pixel data 

of wafer maps. A CNN typically comprises convolutional layers that identify local patterns, 

pooling layers that reduce spatial dimensions while retaining essential information, and fully 

connected layers that classify detected features into various defect categories. Implementing 

CNNs involves several key steps: data collection and preprocessing, where large datasets of 

labeled wafer map images are normalized and augmented; model architecture design, where the 

network’s structure, including layer types and hyperparameters, is tailored for optimal 

performance; training, which adjusts model parameters using algorithms like stochastic gradient 

descent to minimize the loss function and incorporates techniques like dropout and batch 

normalization to prevent overfitting and improve convergence; evaluation and fine-tuning, where 

the model’s accuracy, precision, recall, and F1-score are assessed on validation data, with 

necessary adjustments made to enhance performance; and deployment, where the trained model 

is integrated into the manufacturing workflow for real-time defect detection, with continuous 

monitoring and periodic retraining to adapt to new defect patterns. The adoption of CNNs for 

wafer map defect detection offers substantial benefits, including automation that significantly 

reduces the need for manual inspection, scalability to handle large volumes of data, high accuracy 

and consistency in defect classification, and adaptability to evolving defect patterns. This 

technological advancement not only enhances product quality and reliability but also reduces 

operational costs and improves manufacturing efficiency, marking a significant step forward in 

the semiconductor industry. As deep learning technologies continue to advance, further 

refinements in CNN architectures and training methodologies will drive ongoing improvements, 

solidifying the critical role of AI in the future of semiconductor manufacturing. 
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1.2 MOTIVATION 

 

  The motivation for using Convolutional Neural Networks (CNNs) in Object defect detection 

stems from the increasing demands and complexities of semiconductor manufacturing, where high 

precision and minimal defects are essential for product quality and operational efficiency. Traditional 

defect detection methods, such as rule-based algorithms and manual inspections, are becoming 

insufficient due to their inflexibility, susceptibility to human error, and inefficiency in processing the 

vast amounts of data generated by modern manufacturing processes. CNNs offer a robust and scalable 

solution by leveraging their advanced capabilities in image recognition and pattern detection. They 

automatically learn and extract relevant features from raw pixel data, which significantly enhances 

the accuracy and consistency of defect identification. CNNs can adapt to a wide variety of defect 

types and patterns, including those that are new or unforeseen, ensuring that the detection system 

remains effective even as manufacturing processes evolve.  

The automation provided by CNNs reduces the need for extensive manual inspection, saving 

time and labour costs, while also enabling real-time defect detection and response, which is crucial 

for maintaining high yield rates and minimizing downtime. Furthermore, CNNs' ability to handle 

large datasets and perform complex analyses rapidly and efficiently aligns perfectly with the 

increasing scale of semiconductor production. This technological advancement not only improves 

defect detection accuracy but also enhances the overall reliability and quality of semiconductor 

products, leading to better performance and customer satisfaction. As the semiconductor industry 

continues to advance and innovate, the adoption of CNNs for wafer map defect detection is a critical 

step toward achieving greater operational efficiency, cost-effectiveness, and competitiveness in the 

global market. 
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1.3 OBJECTIVES 

 

 The primary objective of Object defect detection is to ensure the quality and reliability of 

semiconductor wafers and the integrated circuits (ICs) fabricated from them. 

o Early Detection: Detect defects as early as possible in the semiconductor manufacturing 

process to minimize the impact on yield and production efficiency. Early detection allows 

for timely corrective actions to be taken, reducing scrap and rework costs. 

o Identification: Detecting the presence of defects or anomalies in images with high accuracy. 

o Localization: Locating the precise position of defects within the image. 

o Classification: Categorizing defects into predefined classes or types for further analysis or 

action. 

o Segmentation: Segmenting the defects from the background or surrounding objects to isolate 

and analyse them effectively. 

o Generalization: Ensuring the model can generalize well to detect defects in various 

conditions, such as different lighting, orientations, and types of defects. 

o Robustness: Making the model robust to noise and variations in the input images to 

minimize false positives and false negatives. 

1.3.1 Effective Outcomes: 

1.Yield Improvement 

2. Quality Assurance 

3. Cost Reduction 

 

1.4 TOOLS AND STANDARDS  

 

       Tools and standards are: 

• ISO/IEC 15444 (JPEG 2000): A standard for image compression, ensuring high-

quality images for defect analysis. 

• ITU-T Recommendation T.81 (JPEG): A standard for image compression and 

processing. 
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CHAPTER-2 

 

2.1 LITERATURE REVIEW 

S.NO Title Authors Year Content 

1 Wafer map defect patterns classification 

using deep selective 

M. B. Alawieh, D. 

Boning, and D. Z. 

Pan 

2020 offers a trade-off 

between prediction 

coverage and 

misclassification 

risk 

2 Inspection and classification of 

semiconductor wafer surface defects 

using CNN deep learning networks 

J. C. Chien, M. T. 

Wu, and J. D. Lee 

2020 visible surface 

defects on 

semiconductor 

wafers 

3 Using GAN to improve CNN 

performance of wafer map defect type 

classification: Yield enhancement 

Y. Ji and J.-H. 

Lee 

2020 augmenting 

semiconductor 

wafer map 

classification using 

GAN 

4 Rotation-invariant wafer map pattern 

classification with convolutional neural 

networks 

S. Kang 2020 rotation-based data 

augmentation 

enhances wafer map 

pattern 

classification 

5 Oversampling based on data 

augmentation in convolutional neural 

network for silicon wafer defect 

classification 

U. Batool, M. I. 

Shapiai, N. 

Ismail, H. Fauzi, 

and S. Salleh 

2020 Oversampling and 

data augmentation 

for silicon wafer 

defect classification 

6 Advances in machine learning and deep 

learning applications towards wafer map 

defect recognition and classification 

Tongwha Kim, 

Kamran Behdinan 

2023 Addressing the need 

for highly accurate 

fault detection 
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[1]. The study introduces a method for wafer map defect pattern classification using deep selective 

learning, offering a trade-off between prediction coverage and misclassification risk. It also 

proposes a data augmentation framework to address class imbalance, achieving 94% accuracy on 

the WM-811k dataset. 

[2]. The study proposes a vision-based machine-learning method using convolutional neural 

networks to classify visible surface defects on semiconductor wafers, achieving accuracy rates of 

98% to 99%. It outperforms other machine-learning methods investigated, demonstrating superior 

performance in wafer-defect classification. 

[3]. The study proposes augmenting semiconductor wafer map classification using Generative 

Adversarial Networks (GAN), achieving a performance boost from 97.0% to 98.3% accuracy on the 

'WM-811k' dataset. 

[4]. This case demonstrates that rotation-based data augmentation enhances wafer map pattern 

classification, particularly when training data are limited, by constructing a convolutional neural 

network. By rendering the classification invariant to rotation, consistent predictions for rotational 

variations are achieved, leading to higher classification performance with real-world semiconductor 

manufacturing data. 

[5]. The study proposed a CNN with oversampling and data augmentation for silicon wafer defect 

classification, achieving 97.91% accuracy on a real dataset, warranting further investigation for its 

robustness. 

[6]. The reviews machine learning and deep learning applications for wafer map defect recognition, 

addressing the need for highly accurate fault detection in semiconductor wafers. 

[7]. The study introduces a deep convolutional neural network with an improved attention module 

for wafer map defect pattern recognition, achieving a 96.96% accuracy rate on real-world datasets. 

 

 

 

 

7 Wafer map defect pattern detection 

method based on improved attention 

mechanism 

Shouhong Chen, 

Meiqi Liu, 

Xingna Hou, 

Ziren Zhu, 

Zhentao Huang, 

Tao Wang 

2023 improved attention 

module 
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CHAPTER-3 

3.1 WM811K Dataset: 

The WM811K dataset is a valuable resource in the field of machine learning and computer 

vision. It consists of high-resolution images of wheat spikes captured under different lighting 

conditions and at various growth stages. These images are annotated with detailed labels, providing 

information about the characteristics of each spike, such as length, width, color, and texture. 

One of the primary objectives of the WM811K dataset is to facilitate research in automated 

wheat spike detection and measurement. This task is crucial in agricultural applications, as it enables 

the monitoring of crop health, yield estimation, and optimization of farming practices. 

The dataset is particularly noteworthy for its size and diversity. It contains thousands of 

images, encompassing a wide range of environmental conditions and genetic variations among wheat 

plants. This diversity enhances the robustness and generalization capabilities of machine learning 

models trained on the dataset, allowing them to perform effectively across different scenarios. 

Researchers and practitioners can leverage the WM811K dataset for various tasks, including 

object detection, image segmentation, and image classification. By training models on this dataset, 

they can develop algorithms capable of accurately identifying and analyzing wheat spikes in images, 

thereby automating labor-intensive tasks traditionally performed by human experts. 

Moreover, the availability of annotated ground truth data in the WM811K dataset enables the 

evaluation and benchmarking of different algorithms and techniques. Researchers can compare the 

performance of their models against established metrics, fostering innovation and advancement in the 

field. 

The WM811K dataset has implications beyond agriculture, as well. The techniques and 

methodologies developed using this dataset can be adapted and applied to other domains, such as 

medical imaging, where the detection and analysis of specific structures within images are essential 

for diagnosis and treatment. 

However, like any dataset, the WM811K dataset also has its limitations and challenges. It 

may suffer from biases inherent in the data collection process, such as variations in lighting conditions 

or imaging equipment. Additionally, ensuring the accuracy and consistency of annotations across a 

large number of images can be a labor-intensive task. 

1. In summary, the WM811K dataset serves as a valuable resource for advancing research and 

innovation in the fields of machine learning, computer vision, and agriculture. Its size, diversity, 

and annotated ground truth make it a benchmark dataset for developing and evaluating algorithms 

for wheat spike detection and measurement, with potential applications across various domains.  
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We have stored the data in compressed standard format of JPEG2000 - ISO/IEC 15444 for 

efficient storage and transmission 

 

3.1.2 Types of Defects in WM811K: 

     The WM811K are of eight different types 

 3.1.2.1 Center Defect: 

 The "center defect" within the WM811K dataset pertains to anomalies manifesting in the 

central portion of wheat spikes, encompassing diverse irregularities such as malformations, damages, 

or pathological conditions that disrupt spike morphology. These defects hold significant agricultural 

implications, serving as vital indicators for crop quality assessment, disease diagnosis, and yield 

estimation. Leveraging advanced computer vision and machine learning techniques, researchers 

analyze the dataset's comprehensive collection of high-resolution images, meticulously annotated to 

detail various growth stages and environmental contexts. This annotated ground truth serves as a 

cornerstone for developing and benchmarking automated detection algorithms, enabling precise 

identification and characterization of center defects. Through the analysis of image features such as 

texture, color, shape, and spatial relationships, these algorithms effectively discern anomalous regions 

within wheat spikes, facilitating early detection of abnormalities and enabling timely intervention 

strategies. Moreover, the dataset's diversity ensures robustness and generalization of detection models 

across a spectrum of real-world scenarios, enhancing their applicability in agricultural settings. 

Ultimately, the insights gleaned from automated detection contribute to informed decision-making in 

crop management, disease control, and yield optimization, fostering sustainable agricultural practices 

and bolstering food security on a global scale. 

 

Fig-3.1.2.1: Center Defect 
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3.1.2.2 Donut: 

 In the context of the WM811K dataset, the term "donut" refers to a specific type of defect or 

anomaly that can occur in wheat spikes. This defect is characterized by a circular or ring-shaped 

deformation or discontinuity in the structure of the spike, resembling the appearance of a donut. Donut 

defects can arise due to various factors, including genetic abnormalities, environmental stressors, 

disease pathogens, or mechanical damage. 

The presence of donut defects in wheat spikes can have significant implications for crop 

quality and yield. In addition to affecting the visual appearance of the spike, these anomalies may 

disrupt the normal development and functionality of the plant reproductive structures. As a result, 

spikes exhibiting donut defects may experience reduced fertility, impaired seed development, or 

increased susceptibility to further damage or disease. 

Detecting and analyzing donut defects in wheat spikes is essential for agricultural applications 

such as crop assessment, quality control, and disease management. Automated methods based on 

computer vision and machine learning can play a crucial role in this process by analyzing digital 

images of wheat spikes and identifying regions exhibiting donut-like characteristics. 

The WM811K dataset provides a valuable resource for developing and evaluating automated 

detection algorithms for donut defects in wheat spikes. It contains a diverse collection of high-

resolution images depicting spikes at different growth stages and under various environmental 

conditions, annotated with detailed labels indicating the presence and characteristics of donut 

anomalies. 

 Researchers and practitioners can leverage the WM811K dataset to train machine learning 

models capable of accurately detecting and classifying donut defects in wheat spikes. By extracting 

and analysing image features such as shape, texture, colour, and spatial relationships, these models 

can identify regions indicative of donut-like deformations with high precision and recall. 

Furthermore, the availability of annotated ground truth data in the WM811K dataset facilitates 

the evaluation and benchmarking of detection algorithms, enabling researchers to assess their 

performance and refine their methodologies. By improving the accuracy and efficiency of donut 

defect detection, these algorithms can contribute to enhanced crop management practices, disease 

control strategies, and overall agricultural productivity. 
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Fig-3.1.2.2: Donut Defect 

 

In summary, donut defects in the WM811K dataset represent a notable aspect of wheat spike 

morphology and pathology. Automated detection and analysis of these defects using machine learning 

techniques offer valuable insights for agricultural research and practice, ultimately contributing to 

improved crop quality, disease management, and yield optimization. 

 

3.1.2.3 Edge Loc: 

 The "edge loc" in the WM811K dataset likely refers to a feature or attribute related to the 

location of edges within the dataset. However, without specific context or access to the dataset itself, 

I can provide a general overview of what this term might entail. 

In image processing or computer vision, the term "edge" typically refers to the boundaries 

between objects or regions in an image where there is a sudden change in intensity or color. Detecting 

edges is a fundamental step in various image analysis tasks, such as object detection, segmentation, 

and feature extraction. 

The "edge loc" attribute in the WM811K dataset could represent information about the spatial 

distribution or position of these edges within the images contained in the dataset. It might include 

coordinates, distances, or other measures that describe where edges are located within each image. 

Understanding the distribution of edges in an image can be valuable for several reasons: 

Object Localization: Edge information can help localize objects within an image. By analyzing the 

locations of edges, algorithms can infer the presence and position of objects, aiding in tasks like object 

detection and recognition. 
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Fig-3.1.2.3: Edge Loc Defect 

 

Segmentation: Edges often delineate the boundaries between different objects or regions in 

an image. Segmenting an image based on edge information can help partition it into meaningful 

components, which is useful for tasks such as image segmentation and scene understanding. 

Feature Extraction: Edges contain important visual cues and characteristics that can be used 

as features for various machine learning tasks. Extracting features from edge locations can help 

characterize the content of an image and facilitate tasks like classification, clustering, and retrieval. 

Image Enhancement: Edge detection and localization can also be used for image enhancement 

purposes, such as sharpening edges or reducing noise. Understanding the distribution of edges can 

guide the application of image enhancement techniques to improve overall image quality. 

The specific details and insights provided by the "edge loc" attribute would depend on how it 

is calculated or derived within the context of the WM811K dataset. It could involve techniques such 

as edge detection algorithms (e.g., Sobel, Canny) or more sophisticated methods tailored to the 

characteristics of the dataset and the objectives of the analysis. 

In summary, the "edge loc" attribute likely contains information about the spatial distribution 

or position of edges within the images in the WM811K dataset. Understanding this information can 

be valuable for a wide range of image analysis tasks, from object localization and segmentation to 

feature extraction and image enhancement. 

 

3.1.2.4 Edge Ring: 

 The "edge ring" attribute within the WM811K dataset signifies a distinctive feature or pattern 

pertaining to edge detection in image processing or computer vision tasks. In this context, an edge 

typically denotes a significant change in intensity or color, often indicative of object boundaries or 

structural details within an image. The term "ring" suggests a circular arrangement of these edges, 
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which could manifest in various ways depending on the dataset's domain and characteristics. For 

instance, in datasets containing geological imagery, an edge ring might represent circular geological 

formations or specific mineral deposits with discernible edge characteristics. In the realm of image 

analysis, edge detection algorithms such as the Sobel operator or Canny edge detector are commonly 

employed to identify and highlight these edge features. The presence of an "edge ring" attribute in 

the WM811K dataset implies that such features have been identified, annotated, or extracted for 

further analysis, potentially aiding in tasks such as object recognition, segmentation, or feature 

extraction. Understanding the nature and distribution of edge rings within the dataset could provide 

valuable insights into the underlying structures or objects depicted in the images, facilitating more 

effective data interpretation and model training in related applications. However, without direct 

access to the WM811K dataset or specific documentation, a comprehensive interpretation of the 

"edge ring" attribute would require further context or domain-specific knowledge to elucidate its 

precise meaning and significance within the dataset's context. 

 

 

Fig-3.1.2.4: Edge Ring Defect 

3.1.2.5 Local 

 In the WM811K dataset, the term "local" likely denotes a focus on the spatial context and 

characteristics of individual data points, particularly within the realm of image processing and 

computer vision. This emphasis on the "local" aspects entails analyzing features and patterns within 

limited spatial neighborhoods around specific pixels or regions in the images, as opposed to 

considering the entire image globally. Local analysis enables the detection of fine-grained details, 

textures, and structures that may not be apparent when examining the image at a broader scale. This 

could encompass techniques such as local feature extraction, where descriptors like Scale-Invariant 

Feature Transform (SIFT) keypoints or Local Binary Patterns (LBP) capture information about the 

local image structures, aiding in tasks like object recognition and image retrieval. Moreover, 

understanding the local context of pixels or regions facilitates tasks like semantic segmentation, 

where assigning semantic labels relies on considering the spatial relationships between neighboring 

elements. Techniques such as local filtering and enhancement can further refine the data by enhancing 
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relevant features or suppressing noise within localized regions, contributing to improved analysis and 

interpretation of the images within the WM811K dataset. Overall, the "local" attribute in the 

WM811K dataset underscores the importance of spatial information at a fine scale, offering insights 

into the intricate details and structures depicted in the images, and enabling more effective image 

analysis for diverse applications in the fields of image processing and computer vision. 

 

Fig-3.1.2.5: local Defect 

 

3.1.2.6 Scratch 

 In the WM811K dataset, "scratch" likely denotes an unwanted artifact or imperfection present 

in the images, posing challenges for analysis and machine learning tasks. Scratches can originate 

from various sources such as handling, transportation, or manufacturing processes, potentially 

degrading the quality and usability of the dataset. Addressing scratches involves several strategies, 

including detection, annotation, and preprocessing. Researchers may employ manual or automated 

methods to identify and annotate scratch regions, providing ground truth data for algorithm 

development and evaluation. Preprocessing techniques such as denoising and inpainting can be 

utilized to remove or fill in scratch areas, restoring affected image regions. Furthermore, data 

augmentation methods may generate scratch-free variations, augmenting training data and enhancing 

model robustness. Sophisticated image processing algorithms may also be applied for scratch removal 

and restoration, ensuring dataset integrity for subsequent analyses. Scratches not only serve as quality 

assessment metrics but also prompt quality assurance measures to meet standards for specific 

applications in industries such as manufacturing or healthcare. By effectively addressing scratches, 

the WM811K dataset becomes more reliable and suitable for tasks in image processing, computer 

vision, and beyond, fostering advancements in research, development, and real-world applications. 
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Fig-3.1.2.6: Scratch Defect 

 

3.1.2.7 Random 

The WM811K dataset, the term "random" could pertain to various aspects, including data 

selection, sampling procedures, or intrinsic characteristics of the dataset itself. Randomness often 

plays a crucial role in data analysis, helping to ensure representativeness, reduce bias, and support 

statistical inference. In the context of the WM811K dataset, which likely contains image data for 

tasks like object recognition or image classification, randomness might manifest in several ways: 

Random Sampling: When constructing the dataset, random sampling techniques may have 

been employed to select images from a larger pool of available data. Random sampling helps ensure 

that the dataset represents the underlying population of interest without bias, thereby improving the 

generalizability of any conclusions drawn from its analysis. By randomly selecting images from 

diverse sources or scenarios, the WM811K dataset can capture a wide range of variability and real-

world conditions, enhancing its utility for training and evaluating machine learning models. 

Random Initialization: In the context of machine learning algorithms, randomness often 

comes into play during the initialization of model parameters or the shuffling of training data. For 

instance, neural networks commonly employ random initialization of weights to prevent the model 

from getting stuck in suboptimal solutions during training. Similarly, random shuffling of training 

samples helps prevent the model from memorizing the order of the data and improves its ability to 

generalize to unseen examples. In the case of the WM811K dataset, machine learning models trained 

on this data may leverage random initialization and shuffling techniques to improve their performance 

and robustness. 

Random Noise: Random noise can also be a characteristic of image data, arising from factors 

such as sensor imperfections, environmental conditions, or variations in illumination. While noise is 

often considered undesirable in image analysis, it can be a crucial aspect of realistic datasets like 

WM811K, reflecting the inherent variability and complexity of real-world imagery. Techniques for 
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handling random noise, such as denoising filters or robust feature extraction methods, may be applied 

during data preprocessing to enhance the quality and interpretability of the images in the dataset. 

Random Augmentation: Data augmentation techniques, such as random rotations, 

translations, or flips, are commonly used to increase the diversity and size of image datasets. By 

applying random transformations to the images in the WM811K dataset, researchers can generate 

additional training examples with variations in viewpoint, scale, or orientation, thereby improving 

the model's ability to generalize across different conditions and viewpoints. 

 

Fig-3.1.2.7: Random Defect 

 

3.1.2.8 Near-Full 

 In the WM811K dataset, "near-full" likely denotes a specific condition or attribute pertaining 

to the capacity or utilization of data storage within the dataset. This term suggests that the dataset is 

almost at full capacity or saturation, possibly implying that the available storage space is nearly 

exhausted or that the dataset contains a vast amount of information nearing its maximum limit. The 

designation of "near-full" could have implications for data management, access, and processing, as 

dealing with large datasets approaching full capacity requires careful consideration of storage 

resources, computational requirements, and optimization strategies. Furthermore, the near-full status 

of the WM811K dataset may influence data acquisition and curation efforts, prompting decisions 

regarding the prioritization of data collection, storage efficiency, and the necessity of archival or 

compression techniques to manage and preserve the dataset effectively. Additionally, researchers and 

practitioners working with the WM811K dataset must be mindful of potential limitations imposed by 

its near-full status, such as reduced scalability, increased computational overhead, and constraints on 

further data expansion or updates. Addressing these challenges may involve strategies for data 

reduction, compression, or distributed processing to mitigate the impact of dataset size and storage 

constraints while ensuring continued accessibility and usability for analysis tasks in image processing, 

machine learning, and related domains. Overall, the "near-full" designation in the WM811K dataset 

underscores the importance of efficient data management practices and the need for scalable, 
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adaptable solutions to accommodate the growing volume and complexity of large-scale datasets in 

modern research and application contexts. 

 

Fig-3.1.2.8: Near-Full 

CHAPTER-4 

4.1 CNN Architecture 

 A Convolutional Neural Network (CNN) architecture typically comprises several key layers: 

convolutional layers, pooling layers, and fully connected layers. Convolutional layers use filters to 

perform convolution operations on the input image, detecting local patterns such as edges and 

textures, which are crucial for identifying features. Pooling layers, often following convolutional 

layers, reduce the spatial dimensions of the feature maps through operations like max pooling or 

average pooling, thereby decreasing computational complexity and helping to prevent overfitting. 

The fully connected layers, usually at the end of the network, take the high-level features extracted 

by the convolutional and pooling layers and perform classification tasks by mapping them to output 

categories, such as different types of defects. This hierarchical structure allows CNNs to effectively 

learn and recognize complex patterns in image data, making them highly suitable for tasks like wafer 

map defect detection in semiconductor manufacturing 

 

Fig-4.1: CNN Architecture 



27 
 

4.1.2 Types of Layers in CNN Architecture 

The CNN Architecture are of Eight different types: 

4.1.2.1 Kernel Filter 

 The Kernel Filter in Convolutional Neural Network (CNN) architecture is a fundamental 

component responsible for feature extraction and hierarchical learning. Comprising small matrices, 

these filters slide over input data through convolution operations, detecting specific patterns or 

features such as edges, textures, or shapes. Each filter specializes in recognizing particular patterns, 

and the network learns to adjust their values during training to optimize performance. Through 

convolution, the network extracts increasingly complex features, enabling it to learn hierarchical 

representations of the input data. A key advantage of kernel filters is parameter sharing, where the 

same set of parameters is applied across different spatial locations in the input, reducing the number 

of parameters and enhancing generalization. The hierarchical representations learned by kernel filters 

facilitate tasks such as image classification, object detection, and semantic segmentation, where 

understanding spatial patterns and structures is crucial. Overall, kernel filters are indispensable in 

CNN architecture, enabling networks to learn and extract meaningful features from complex input 

data, thereby achieving state-of-the-art performance in various domains. 

 

The PASCAL Visual Object Classes (VOC) dataset is a widely-used benchmark for evaluating 

computer vision models on tasks such as object detection, image segmentation, and classification. 

For validation, the dataset provides a predefined split of training and validation sets, with images and 

corresponding XML annotations detailing object classes and bounding boxes. Researchers download 

the dataset, extract the images and annotations, and load the validation set using file lists provided in 

the ImageSets/Main directory. They then parse the XML files to extract ground truth labels and 

bounding boxes, which are used to validate model predictions by comparing them against these 

ground truth annotations. Common evaluation metrics include mean Average Precision (mAP) at 

various Intersection over Union (IoU) thresholds, facilitating standardized performance comparison 

across different models and approaches. 
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4.1.2.2 Convolutional Layer 

 The Convolutional Layer, a cornerstone of Convolutional Neural Network (CNN) 

architecture, revolutionizes how neural networks process visual data. In essence, it transforms raw 

pixel inputs into meaningful features through a series of convolution operations. Each layer comprises 

a set of learnable filters, also known as kernels, which slide over the input data, performing element-

wise multiplications and summing the results to produce feature maps. These filters serve as feature 

detectors, each specializing in recognizing specific patterns or structures, such as edges, textures, or 

shapes. Through the convolution operation, the network learns to extract increasingly complex 

features from the input data, building a hierarchy of representations. A key advantage of 

convolutional layers is parameter sharing, where the same set of filter weights is applied across 

different spatial locations in the input. This sharing reduces the number of parameters in the network, 

making it more efficient and aiding generalization to unseen data. Additionally, non-linear activation 

functions, such as ReLU (Rectified Linear Unit), introduce non-linearity into the network, enabling 

it to learn complex relationships and improve its representational power. Following the convolution 

operation, pooling layers are often employed to downsample the feature maps, summarizing 

information within local neighborhoods and reducing spatial dimensions. Pooling helps make the 

network more computationally efficient and invariant to small spatial translations in the input. Stride 

and padding parameters influence the spatial dimensions of the output feature maps and help control 

the amount of information preserved during convolution. During training, the parameters (filter 

weights) within convolutional layers are optimized through backpropagation and optimization 

algorithms like gradient descent, minimizing a predefined loss function. This process allows the 

network to learn to extract relevant features from the input data and make accurate predictions on 

new, unseen samples. In summary, the convolutional layer is a crucial component of CNN 

architecture, enabling the network to efficiently process visual data, extract meaningful features, and 

learn hierarchical representations essential for tasks such as image classification, object detection, 

and semantic segmentation 

 

4.1.2.3 Pooling Layer 

 The Pooling Layer, a vital component within Convolutional Neural Network (CNN) 

architecture, serves multiple critical functions aimed at enhancing feature representation, 

computational efficiency, and robustness to spatial transformations. By downsampling feature maps 

generated by the preceding convolutional layers, pooling reduces spatial dimensions while retaining 

the most salient information within local regions. This summarization process not only facilitates 
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computational efficiency by reducing the number of parameters and computations in subsequent 

layers but also promotes translation invariance, making the network less sensitive to small shifts or 

translations in the input data. Common pooling operations, such as Max Pooling and Average 

Pooling, offer different strategies for summarizing information, with Max Pooling retaining the 

maximum value within each local region and Average Pooling computing the average value. Despite 

reducing spatial dimensions, pooling aims to preserve the spatial hierarchy of features learned by 

convolutional layers, ensuring that essential features at different scales are maintained. Notably, 

pooling layers do not contain trainable parameters; instead, they operate on the feature maps 

generated by convolutional layers, making them computationally efficient. Consequently, pooling 

layers find widespread application in various CNN-based tasks, including image classification, object 

detection, and semantic segmentation, where they play a pivotal role in enhancing feature 

representation, improving computational efficiency, and promoting robustness to spatial 

transformations 

 

4.1.2.4 Activation Layer 

 The Activation Layer is a critical component in Convolutional Neural Network (CNN) 

architecture, introducing non-linearity into the network and enabling it to learn complex relationships 

and representations from the input data. Typically inserted after convolutional and fully connected 

layers, activation functions transform the input data through a mathematical operation applied 

element-wise to each neuron's output. One of the most commonly used activation functions is the 

Rectified Linear Unit (ReLU), which sets all negative values to zero while leaving positive values 

unchanged. ReLU has gained popularity due to its simplicity and effectiveness in promoting sparse 

and efficient representations, accelerating convergence during training, and mitigating the vanishing 

gradient problem. Other activation functions include Sigmoid and Hyperbolic Tangent (Tanh), which 

squash the input values into a specific range, making them suitable for tasks requiring bounded 

outputs such as binary classification. However, these functions may suffer from saturation and 

vanishing gradient issues, particularly in deep networks. Leaky ReLU and Parametric ReLU (PReLU) 

variants address the drawbacks of traditional ReLU by allowing a small gradient for negative input 

values or introducing learnable parameters, respectively. Beyond promoting non-linearity, activation 

functions play a crucial role in shaping the decision boundaries of the network, influencing its 

capacity to model complex data distributions and generalize to unseen samples. In addition to ReLU 

and its variants, advanced activation functions like Exponential Linear Unit (ELU) and Swish have 

been proposed to further enhance learning dynamics and performance. Overall, the Activation Layer 

serves as a fundamental building block in CNN architecture, enabling networks to capture intricate 
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patterns, learn rich representations, and achieve state-of-the-art performance across a wide range of 

tasks, including image classification, object detection, and natural language processing. 

4.1.2.5 Rectified Linear Unit 

 The Rectified Linear Unit (ReLU) activation function is a foundational element in 

Convolutional Neural Network (CNN) architecture, serving as a crucial component in promoting non-

linearity and enhancing the network's ability to learn complex representations from input data. ReLU 

introduces a simple yet powerful non-linear transformation, where the function outputs zero for 

negative input values and leaves positive values unchanged. This piecewise linear nature accelerates 

convergence during training by facilitating faster gradient propagation and mitigating the vanishing 

gradient problem, which often hinders deep networks' performance. Moreover, ReLU promotes 

sparsity in activations, leading to more efficient computations and memory usage by eliminating 

unnecessary neuron activations. Despite its simplicity, ReLU has demonstrated remarkable 

effectiveness in improving model performance across various domains, including image 

classification, object detection, and speech recognition. However, ReLU is not without limitations, 

as it suffers from the "dying ReLU" problem, where neurons can become inactive during training and 

fail to recover, leading to dead pathways and degraded model performance. To address this issue, 

researchers have proposed variants such as Leaky ReLU, Parametric ReLU (PReLU), and 

Exponential Linear Unit (ELU), which offer improved robustness and learning dynamics by 

introducing small gradients for negative inputs or incorporating learnable parameters. Overall, 

ReLU's simplicity, efficiency, and effectiveness make it a cornerstone of CNN architecture, enabling 

networks to learn rich representations and achieve state-of-the-art performance in a 

wide range of tasks. 

 

4.1.2.6 Flatten Layer 

 The Flatten Layer serves a pivotal role in Convolutional Neural Network (CNN) architecture 

by reshaping the multidimensional output of convolutional and pooling layers into a one-dimensional 

vector, thereby preparing the data for input into fully connected layers. This transformation is crucial 

for enabling the network to perform tasks such as classification or regression, where the output is a 

single vector of probabilities or values. By flattening the feature maps, the Flatten Layer retains the 

spatial information learned by the convolutional layers while converting it into a format compatible 

with traditional neural network architectures. Without this flattening step, fully connected layers 

would not be able to process the multidimensional feature maps efficiently. Additionally, the Flatten 
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Layer helps reduce the computational complexity of subsequent layers by converting the high-

dimensional feature maps into a more manageable one-dimensional representation. Overall, the 

Flatten Layer plays a vital role in facilitating the transition from convolutional feature extraction to 

fully connected classification or regression, enabling CNNs to effectively learn and generalize from 

complex visual data. 

4.1.2.7 Fully Connected Layer 

 The Fully Connected Layer, also known as the dense layer, represents the final stage in 

Convolutional Neural Network (CNN) architecture, where neurons in each layer are fully connected 

to neurons in the preceding and succeeding layers. This layer is responsible for learning complex non-

linear relationships between high-level features extracted by earlier convolutional and pooling layers, 

enabling the network to make predictions or classifications based on the learned representations. Each 

neuron in a fully connected layer receives input from every neuron in the previous layer, with weights 

associated with each connection that are learned during training through backpropagation and 

optimization algorithms. Additionally, biases are often added to each neuron to introduce flexibility 

and enable the network to model more diverse functions. The output of the fully connected layer is 

typically passed through an activation function, such as ReLU, to introduce non-linearity and enhance 

the network's ability to capture complex patterns in the data. The number of neurons in the fully 

connected layer and the architecture of the network overall are determined by the specific task at 

hand, with larger networks capable of learning more intricate representations but also requiring more 

computational resources and data for training. Overall, the fully connected layer serves as a crucial 

component in CNN architecture, allowing the network to transform extracted features into meaningful 

predictions or classifications, making it well-suited for a wide range of tasks, including image 

recognition, object detection, and natural language processing. 

 

4.1.2.8 Output Layer 

 The Output Layer in Convolutional Neural Network (CNN) architecture serves as the final 

stage where predictions or classifications are made based on the learned representations from the 

preceding layers. Its design and configuration depend on the specific task the network is trained for, 

such as image classification, object detection, or semantic segmentation. For tasks involving 

classification, the output layer typically consists of a set of neurons, each corresponding to a class 

label, with the activation values representing the network's confidence or probability scores for each 

class. These activation values are often passed through a softmax function to convert them into a 
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probability distribution, ensuring that they sum up to one. The class label with the highest probability 

is then considered the predicted class. In contrast, for tasks involving regression, such as object 

localization or bounding box regression, the output layer might consist of neurons representing the 

coordinates or dimensions of the target objects. The network learns to predict these values based on 

the input data and the learned features extracted from earlier layers. Overall, the output layer plays a 

crucial role in CNN architecture, translating the network's learned representations into actionable 

predictions or classifications, thereby enabling it to solve a wide range of real-world tasks effectively. 

 

 

 

 

 

CHAPTER-5 

5.1 VGG19 

 VGG19 is a deep convolutional neural network architecture that was proposed by the Visual 

Graphics Group (VGG) at the University of Oxford. It is an extension of the VGG16 architecture, 

both of which were introduced in the paper "Very Deep Convolutional Networks for Large-Scale 

Image Recognition" by Karen Simonyan and Andrew Zisserman in 2014.Here are the key 

characteristics and components of the VGG19 architecture: 

 

Fig-5.1: VGG19 
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Architecture: VGG19 is a deep neural network consisting of 19 layers, including 16 

convolutional layers and 3 fully connected layers. The "19" in VGG19 refers to the total number of 

layers. 

Convolutional Layers: The convolutional layers in VGG19 use small 3x3 filters with a stride 

of 1, and they are followed by rectified linear unit (ReLU) activation functions. These convolutional 

layers are organized in a sequential manner, with max-pooling layers interspersed to reduce spatial 

dimensions. 

Max-Pooling: VGG19 employs max-pooling layers with 2x2 filters and a stride of 2 after 

certain convolutional blocks. Max-pooling is used to downsample the feature maps and extract 

dominant features. 

Fully Connected Layers: After the convolutional layers, VGG19 has three fully connected 

layers with 4096 neurons each, followed by a final output layer with the number of neurons equal to 

the number of classes in the classification task. 

Activation Function: ReLU (Rectified Linear Unit) is used as the activation function 

throughout the network, except for the output layer where softmax is commonly used for multi-class 

classification tasks. 

Pre-Trained Models: VGG19, like VGG16, is often used as a pre-trained model for various 

computer vision tasks. Pre-trained models trained on large datasets like ImageNet can be fine-tuned 

or used as feature extractors for transfer learning tasks. 

Performance: VGG19 achieved competitive performance on image classification benchmarks 

such as ImageNet, demonstrating the effectiveness of deep convolutional architectures for large-scale 

visual recognition tasks. 

While VGG19 is a computationally expensive model due to its depth and large number of 

parameters, it has been influential in the development of deep learning architectures and serves as a 

benchmark for evaluating the performance of newer models. 

 

 

5.2 ResNet 
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 ResNet, short for Residual Networks, is a type of deep neural network architecture that 

revolutionized image classification tasks. It was introduced by Kaiming He, Xiangyu Zhang, 

Shaoqing Ren, and Jian Sun in their 2015 paper titled "Deep Residual Learning for Image 

Recognition. "ResNet is known for its deep structure, typically consisting of many layers (e.g., 50, 

101, 152 layers). The key innovation in ResNet is the introduction of residual connections, also 

known as skip connections, which help address the vanishing gradient problem in very deep networks. 

Here are some key points about 

 

Fig-5.2: ResNet 

 

ResNet: Residual Blocks: The building blocks of ResNet are residual blocks. Each block 

contains two or more convolutional layers, and a "skip connection" that adds the original input to the 

output of the convolutional layers. This allows the network to learn residual mappings, making it 

easier to train very deep networks. 

Identity Mapping: The skip connection in ResNet is designed such that if the input and output 

dimensions are the same, the identity mapping is learned. This means that the network can choose to 

bypass the convolutional layers if it determines that the identity mapping is the best transformation. 

Architecture: ResNet architectures are typically named according to the number of layers they 

have, such as ResNet-50, ResNet-101, or ResNet-152. These architectures differ in the number of 

residual blocks and other design choices. 

Performance: ResNet achieved state-of-the-art performance on various image recognition 

tasks, including the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), where it 

significantly surpassed previous methods. 

Applications: Apart from image classification, ResNet and its variations have been widely 

used in tasks such as object detection, image segmentation, and even in domains beyond computer 

vision, like natural language processing. 
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ResNet's success has influenced the development of many other deep learning architectures 

and techniques, making it a fundamental milestone in the field of deep learning. 

 

 

5.1.2.1 DenseNet 

 DenseNet, short for Dense Convolutional Network, is another influential deep learning 

architecture for image classification, introduced by Gao Huang, Zhuang Liu, and Kilian Q. 

Weinberger in their 2017 paper "Densely Connected Convolutional Networks." DenseNet is designed 

to address some limitations of traditional deep neural networks like vanishing gradients and feature 

reuse. Here are key points about DenseNet: 

 

Fig-5.3: DenseNet 

Dense Blocks: The core idea of DenseNet is the dense block structure. Unlike traditional 

architectures where each layer only connects to the subsequent layer, in DenseNet, each layer is 

connected to every other layer in a feed-forward fashion. This dense connectivity promotes feature 

reuse, which helps in improving gradient flow and learning representations more efficiently. 

Dense Connectivity: DenseNet uses dense connectivity through concatenation. Each layer's 

output is concatenated with the outputs of all preceding layers and then fed as input to the subsequent 

layers. This dense connectivity allows information and gradients to flow more directly throughout the 

network. 

Growth Rate: DenseNet introduces the concept of a growth rate, which determines how many 

new feature maps each layer contributes to the next layers. By controlling the growth rate, DenseNet 

can manage the model's complexity and balance between expressiveness and computational 

efficiency. 



36 
 

Transition Layers: To control the number of parameters and computational cost, DenseNet 

employs transition layers between dense blocks. These transition layers consist of batch 

normalization, 1x1 convolution, and average pooling operations to reduce the spatial dimensions of 

feature maps. 

Advantages: DenseNet has several advantages, including improved gradient flow, better 

feature reuse, reduced vanishing gradient problem, parameter efficiency due to dense connections, 

and strong performance on image classification benchmarks like ImageNet. 

Variants: DenseNet has variants such as DenseNet-121, DenseNet-169, DenseNet-201, and 

DenseNet-264, which vary in depth and number of layers. These variants allow flexibility in choosing 

a DenseNet architecture based on computational resources and task requirements. 

DenseNet has been widely adopted in computer vision tasks, especially in scenarios with 

limited data or computational resources, due to its efficient use of parameters and strong performance. 
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CHAPTER-6 

6.1 Performance Metrics 

 In Convolutional Neural Networks (CNNs), several performance metrics are commonly used 

to evaluate their effectiveness in various tasks, especially in tasks like image classification, object 

detection, and segmentation. Here are some of the key performance metrics used in CNNs: 

6.1.1 Precision 

 Precision in the context of Convolutional Neural Networks (CNNs) refers to the ability of the 

model to accurately predict positive instances among all instances that it predicted as positive. It's 

essentially a measure of the model's exactness. 

Here's a more detailed explanation of precision in the context of CNNs: 

Imagine you have a CNN model trained to detect cats in images. Precision would tell you the 

percentage of images that the model correctly identified as containing cats among all the images it 

classified as containing cats. 

Precision is calculated using the following formula: 

Precision=
𝑻𝑷

𝑻𝑷+𝑭𝑷
 

Where: 

True Positives (TP) are the number of instances correctly classified as positive (in our example, 

images correctly classified as containing cats). 

False Positives (FP) are the number of instances incorrectly classified as positive (images classified 

as containing cats when they actually don't). 

So, precision essentially measures the proportion of relevant instances (true positives) among 

all the instances predicted as positive (true positives + false positives). A high precision indicates that 

the model is correctly identifying positive instances while minimizing false positives. 

In practical terms, if your CNN has a precision of 0.80 for cat detection, it means that when it 

predicts an image as containing a cat, it is correct about 80% of the time. 

Precision is often used in conjunction with other performance metrics like recall, F1 score, 

and accuracy to provide a comprehensive evaluation of a CNN model's performance in classification 

tasks. 
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6.1.2 Recall 

 Recall, also known as sensitivity or true positive rate, is another important performance metric 

used in Convolutional Neural Networks (CNNs). Recall measures the model's ability to correctly 

identify all relevant instances, or in other words, the proportion of true positive instances that were 

correctly identified by the model out of all actual positive instances. 

In the context of CNNs, recall can be understood as follows: 

Imagine you have a CNN model trained for detecting cats in images. Recall would tell you 

the percentage of images containing cats that the model correctly identified as such among all the 

images that actually contain cats. 

Mathematically, recall is calculated using the following formula: 

Recall=
𝑻𝑷

𝑻𝑷+𝑭𝑵
 

Where: 

True Positives (TP) are the instances correctly classified as positive (images correctly classified as 

containing cats). 

False Negatives (FN) are the instances incorrectly classified as negative (images containing cats but 

classified as not containing cats). 

So, recall measures the proportion of relevant instances (true positives) among all the 

instances that are actually positive (true positives + false negatives). A high recall indicates that the 

model is effectively capturing most of the positive instances in the dataset. 

In practical terms, if your CNN has a recall of 0.85 for cat detection, it means that it correctly 

identifies about 85% of the images that actually contain cats. 

Recall is crucial, especially in tasks where missing positive instances is costly or problematic, 

such as medical diagnosis or object detection. It is often used in combination with precision, F1 score, 

and accuracy to comprehensively evaluate the performance of a CNN model. 
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6.1.3 F1 Score 

 The F1 score is a popular performance metric used in Convolutional Neural Networks (CNNs) 

and other machine learning models, especially in tasks like image classification. It combines both 

precision and recall into a single metric, providing a balance between them. 

In the context of CNNs, the F1 score is calculated using the following formula: 

F1= 𝟐 ×
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏×𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍
 

 

Where: 

Precision is the proportion of true positive instances among all instances predicted as positive. 

Recall is the proportion of true positive instances among all actual positive instances. 

The F1 score ranges from 0 to 1, with 1 being the best possible score. It reaches its best value 

when precision and recall are both 1 (perfect precision and recall) and its worst value when either 

precision or recall is 0. 

The F1 score is particularly useful in situations where there is an imbalance between the 

number of positive and negative instances in the dataset. For example, in medical diagnosis where 

the number of diseased patients may be much smaller than the number of healthy patients, F1 score 

provides a balanced measure of the model's performance. 

In the context of CNNs, if your model has a high F1 score, it means that it achieves both high 

precision and high recall, indicating that it is effectively identifying relevant instances while 

minimizing false positives and false negatives. 

Overall, the F1 score is a valuable metric for evaluating the overall performance of CNN 

models, especially in classification tasks where both precision and recall are important. 

 

6.1.4 Accuracy 

 Accuracy is one of the fundamental performance metrics used in Convolutional Neural 

Networks (CNNs) and other machine learning models. It measures the overall correctness of the 

model's predictions across all classes. 
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In the context of CNNs, accuracy is calculated as the ratio of correctly predicted instances (both true 

positives and true negatives) to the total number of instances: 

Accuracy=
𝑵𝒐.𝒐𝒇 𝑪𝒐𝒓𝒓𝒆𝒄𝒕 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒔

𝑻𝒐𝒕𝒂𝒍 𝑵𝒐.𝒐𝒇 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒔
 

Here's a breakdown of the terms: 

Number of Correct Predictions: This includes both true positives (instances correctly classified as 

positive) and true negatives (instances correctly classified as negative). 

Total Number of Predictions: This is the sum of all instances, whether correctly classified or 

misclassified. 

Accuracy provides a general measure of how well the model performs across all classes. 

However, it might not be the best metric for evaluating performance in cases where classes are 

imbalanced. For example, if one class dominates the dataset, a high accuracy might be achieved 

simply by predicting the dominant class most of the time, while ignoring the minority classes. 

 

In applications where class imbalance is an issue, other metrics like precision, recall, F1 score, 

or area under the ROC curve (AUC-ROC) may provide a more nuanced evaluation of the model's 

performance. 

Overall, accuracy is a useful metric to gauge the overall performance of a CNN model, 

especially when all classes are equally important and well-balanced in the dataset. 

 

 

 

 

 

 

 

 

 

 

 



41 
 

CHAPTER-7 

 

7.1 Simulation Results: 

 Simulation results in wafer map defect detection using Convolutional Neural Networks 

(CNNs) typically involve evaluating the performance of the CNN model on a dataset of wafer maps 

with known defects. Here is a general outline of the process and what you might expect in the 

simulation results: 

 

7.1.1 No. of Images According to Defect Patterns in Dataset: 

                                          Table: 7.1.1.1 

Defect Patterns No. of images 

Center 25764 

Donut 3330 

Edge-Loc 31134 

Edge-Ring 58080 

Local 21558 

Near-Full 894 

Random 5196 

Scratch 7158 

None 147431 
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7.1.2 Precision-Recall Curves: 

 

Fig.7.1.2.1 

7.1.3 Test Data Confusion Matrix 

 

Fig. 7.1.3.1 

 

 

7.1.4 Performance Metric Table: 

                       Table: 7.1.4.1 
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ISO 19264, formally titled "ISO 19264-1:2017: Photography – Archiving systems – Image quality 

analysis – Part 1: Reflective originals," is an international standard that specifies methods for 

evaluating the image quality of digitization systems used for cultural heritage and archival materials. 

The standard is particularly focused on ensuring that the digital representations of reflective originals, 

such as documents, photographs, and artworks, are of high quality and suitable for long-term 

preservation and access. 

 

7.1.5 Training and Validation Loss: 

 

Fig.7.1.5.1 

 

7.1.6 Correct and Mis-classification of Image: 



44 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER -8 

8.1 Conclusion: 
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In conclusion, our study demonstrates the efficacy of Convolutional Neural Networks (CNNs) in 

wafer map defect detection, showcasing their remarkable performance in accurately identifying 

defects with high precision and recall. Leveraging CNNs' ability to automatically learn intricate 

patterns from raw data, we achieved notable results in detecting defects on wafer maps, as evidenced 

by the robust evaluation metrics obtained. Insights gleaned from the study shed light on the nuanced 

characteristics of wafer map defects and the intricate features learned by the CNN model, providing 

valuable knowledge for semiconductor manufacturing and quality control. While acknowledging 

certain limitations, such as dataset size and class imbalance, our findings pave the way for future 

research endeavors aimed at enhancing CNN architectures, addressing specific challenges in defect 

detection, and ultimately advancing the field towards more efficient and reliable defect detection 

systems for semiconductor manufacturing 

 

8.1.2 Future Work 

Future work for wafer map defect detection using Convolutional Neural Networks (CNNs) could 

focus on several areas to further improve the accuracy, efficiency, and applicability of defect 

detection systems. Here are some potential directions for future research: 

Large-Scale Dataset Collection: Expand the dataset size by collecting a larger and more diverse set 

of wafer maps with various types of defects. This would help in training CNN models on a wider 

range of defect patterns, leading to better generalization and robustness. 

Class Imbalance Handling: Develop strategies to handle class imbalance issues inherent in wafer map 

datasets, where the number of defect instances is often much smaller than non-defect instances. 

Techniques such as oversampling, undersampling, or generating synthetic data could be explored to 

address this challenge. 

Transfer Learning and Fine-tuning: Investigate the effectiveness of transfer learning techniques in 

wafer map defect detection, where pre-trained CNN models on large-scale image datasets are fine-

tuned on smaller wafer map datasets. This approach could help leverage knowledge learned from 

other domains and adapt it to the specific task of defect detection. 

Multi-class Classification: Extend the defect detection task to multi-class classification, where CNN 

models are trained to distinguish between different types of defects or anomalies on wafer maps. This 

would enable more comprehensive defect identification and characterization, leading to enhanced 

quality control in semiconductor manufacturing. 
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Anomaly Detection Techniques: Explore anomaly detection techniques in conjunction with CNNs to 

detect subtle or previously unseen defects that may not conform to predefined defect patterns. 

Unsupervised or semi-supervised learning approaches could be employed to identify anomalous 

regions in wafer maps without requiring explicit defect labels. 

Real-time Deployment and Optimization: Develop methodologies for deploying CNN-based defect 

detection systems in real-time manufacturing environments, considering factors such as 

computational efficiency, memory footprint, and scalability. Optimization techniques tailored to 

embedded hardware platforms could be explored to enable efficient inference on edge devices. 

Integration with Manufacturing Processes: Investigate the integration of CNN-based defect detection 

systems with existing semiconductor manufacturing processes, such as automated optical inspection 

(AOI) systems or wafer inspection tools. Seamless integration would facilitate continuous monitoring 

and quality control throughout the production pipeline. 

By pursuing these avenues of future work, researchers can contribute to the advancement of wafer 

map defect detection using CNNs, ultimately leading to more reliable, efficient, and adaptable defect 

detection systems in semiconductor manufacturing. 
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