
1

Object Defect Detection and Classification Using CNN

PROJECT REPORT

 Submitted in the fulfilment of the requirements for

the award of the degree of

Bachelor of Technology

in

Electronics and Communication Engineering

By

 KETINENI VENKATA SAI DATHU KURANGI SAI PUNEETH

 [201FA05019] [201FA05020]

 MADATALA TEJA REDDY GOPU NARENDRA REDDY

 [201FA05104] [211LA05045]

Under the Esteemed Guidance of

Dr. Sivaji Satrasupalli

Assistant Professor

Department of ECE

(ACCREDITED BY NAAC WITH ‘A+’GRADE)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

(ACCREDITED BY NBA)

 VIGNAN’S FOUNDATION FOR SCIENCE, TECHNOLOGY AND RESEARCH

(Deemed to be University)

 Vadlamudi, Guntur, Andhra Pradesh, India -522213

May- 2024

2

3

4

ACKNOWLEDGEMENT

 The satisfaction that comes from successfully completing any task would be incomplete without

acknowledging the people who made it possible, whose ongoing guidance and encouragement have

been essential to the achievement.

 We are greatly indebted to Dr. Sivaji Satrasupalli, my revered guide and Associate Professor in

the Department of Electronics and Communication Engineering, VFSTR (Deemed to be University),

Vadlamudi, Guntur, for his valuable guidance in the preparation of this project report. He has been a

source of great inspiration and encouragement to us. He has been kind enough to devote considerable

amount of his valuable time in guiding us at every stage. This is our debut, but we are sure that we

are able to do many more such studies, under the lasting inspiration and guidance given by respectable

guide.

 We would also like to thank to Dr. T. Pitchaiah, Head of the Department, ECE for his valuable

suggestion.

 We would like to specially thank, Dr. N. Usha Rani, Dean, School of Electrical, Electronics and

Communication Engineering for her help and support during the project work.

We thank our project coordinators Dr. Satyajeet Sahoo, Dr. Arka Bhattacharyya, Mr.

Abhishek Kumar and Mr. M. Vamsi Krishna for continuous support and suggestions in scheduling

project reviews and verification of the report. Also, thank to supporting staff of ECE Department for

their technical support for timely completion of project.

 We would like to express our gratitude to Dr. P. Nagabhusan, Vice-Chancellor, VFSTR (Deemed

to be University) for providing us the greatest opportunity to have a great exposure and to carry out

the project.

 Finally, we would like to thank our parents and friends for the moral support throughout the project

work.

 Name of the Student

 Ketineni Venkata Sai Dathu (201FA05019)

 Kurangi Sai Puneeth (201FA05020)

 Madatala Teja Reddy (201FA05104)

 Gopu Narendra Reddy (211LA05045)

5

ABSTRACT

In semiconductor manufacturing, ensuring the quality and reliability of wafers is critical.

Object defect detection on wafer maps, which visually represent the spatial distribution of test results

across a wafer, is a key aspect of this quality control process. Traditional methods of defect detection

often rely on rule-based algorithms or manual inspection, both of which can be time-consuming and

prone to errors. This study presents a novel approach leveraging Convolutional Neural Networks

(CNNs) for automated wafer map defect detection, significantly enhancing accuracy and efficiency.

CNNs, a class of deep learning models particularly effective in image processing tasks, are

employed to identify and classify defects in wafer maps. The proposed system involves preprocessing

wafer map data, training the CNN model on labelled defect datasets, and validating its performance

against established benchmarks. Our approach includes data augmentation techniques to increase the

diversity of the training dataset and enhance the model's robustness.

Experimental results demonstrate that the CNN-based method achieves superior detection

rates compared to traditional techniques, with a notable reduction in false positives and negatives.

The model's performance is evaluated using metrics such as precision, recall, and F1-score,

confirming its efficacy in real-world applications. Additionally, the integration of this automated

system into the manufacturing pipeline promises to streamline the quality control process, reduce

inspection time, and minimize human error.

In conclusion, this study highlights the potential of Convolutional Neural Networks in

transforming wafer map defect detection, offering a scalable and reliable solution that aligns with the

advancements in semiconductor manufacturing technology. Future work will focus on expanding the

model's capabilities to detect a broader range of defect types and further improving its adaptability to

various wafer manufacturing processes.

6

7

CONTENTS

Chapter 1 page no

1.1 Introduction 1

1.2 Motivation 2

1.3 Objectives 3

1.4 Tools and Standards 3

Chapter 2

2.1 Literature Review 4-5

Chapter 3

3.1 WM811K 6

 3.1.2 Types of Defects in WM811K

 3.1.2.1 Center Defect 7

 3.1.2.2 Donut 8

 3.1.2.3 Edge-Loc 9

 3.1.2.4 Edge-Ring 10-11

 3.1.2.5 Local 11-12

 3.1.2.6 Scratch 12-13

 3.1.2.7 Random 13-14

 3.1.2.8 Near-full 14-15

Chapter 4

4.1 CNN Architecture 15

 4.1.2 Types of Layers in CNN Architecture

4.1.2.1 Kernel 16

4.1.2.2 Convolutional Layer 17

4.1.2.3 Pooling Layer 17-18

 4.1.2.4 Activation Layer 18-19

4.1.2.5 Rectified Linear Unit 19

4.1.2.6 Flatten Layer 19-20

4.1.2.7 Fully Connected Layer 20

8

4.1.2.8 Output Layer 20-21

Chapter 5

5.1 VGG19 21-23

5.1 ResNet 23-24

5.1 DenseNet 24-25

Chapter 6

6.1 Performance Metrics 26

6.1.1 Precision 26

6.1.2 Recall 27

 6.1.3 F1 28

 6.1.4 Accuracy 29

Chapter 7

 7.1 Simulation Results 30-4

Chapter 8

8.1 Conclusion 35

8.1.1 Future Work 35-36

8.2 References 36-37

9

LIST OF FIGURES

Figure No. Figure Name Page No.

1 Center Defect 8

2 Donut Defect 9

3 Edge-Loc Defect 10

4 Edge-Ring 11

5 Local 12

6 Scratch 13

7 Random 14

8 Near-Full 14

9 CNN Architecture 15

10 VGG19 20

11 ResNet 22

12 DenseNet 23

13 P-R Curves 29

14 Test Data Matrix 29

15 Training & Validation 30

16 Correct & Mis-classification 30

10

LIST OF TABLES

Table No. Table Name Page No.

1 Literature Review 4-5

2 Defect Pattern Images 28

3 Performance Metric 30

11

LIST OF ACRONYMS AND ABBREVIATIONS

AI Artificial Intelligence

CNN Convolutional Neural Network

DL Deep Learning

ELU Exponential Linear Unit

IC Integrated Circuit

ReLu Rectified Linear Unit

VGG Visual Geometry Group

12

CHAPTER-1

1.1 INTRODUCTION

In semiconductor manufacturing, the precision and quality of integrated circuits (ICs) are

paramount, with wafer maps serving as vital tools to visualize and detect defects on

semiconductor wafers caused by factors like contamination, equipment malfunction, or process

variation. Traditional methods for defect detection, including rule-based algorithms and manual

inspection, are becoming increasingly inadequate due to their rigidity, susceptibility to human

error, and inefficiency in handling the growing complexity and volume of data. Convolutional

Neural Networks (CNNs) present a transformative solution, leveraging their advanced

capabilities in image recognition to automatically learn and extract features from raw pixel data

of wafer maps. A CNN typically comprises convolutional layers that identify local patterns,

pooling layers that reduce spatial dimensions while retaining essential information, and fully

connected layers that classify detected features into various defect categories. Implementing

CNNs involves several key steps: data collection and preprocessing, where large datasets of

labeled wafer map images are normalized and augmented; model architecture design, where the

network’s structure, including layer types and hyperparameters, is tailored for optimal

performance; training, which adjusts model parameters using algorithms like stochastic gradient

descent to minimize the loss function and incorporates techniques like dropout and batch

normalization to prevent overfitting and improve convergence; evaluation and fine-tuning, where

the model’s accuracy, precision, recall, and F1-score are assessed on validation data, with

necessary adjustments made to enhance performance; and deployment, where the trained model

is integrated into the manufacturing workflow for real-time defect detection, with continuous

monitoring and periodic retraining to adapt to new defect patterns. The adoption of CNNs for

wafer map defect detection offers substantial benefits, including automation that significantly

reduces the need for manual inspection, scalability to handle large volumes of data, high accuracy

and consistency in defect classification, and adaptability to evolving defect patterns. This

technological advancement not only enhances product quality and reliability but also reduces

operational costs and improves manufacturing efficiency, marking a significant step forward in

the semiconductor industry. As deep learning technologies continue to advance, further

refinements in CNN architectures and training methodologies will drive ongoing improvements,

solidifying the critical role of AI in the future of semiconductor manufacturing.

13

1.2 MOTIVATION

 The motivation for using Convolutional Neural Networks (CNNs) in Object defect detection

stems from the increasing demands and complexities of semiconductor manufacturing, where high

precision and minimal defects are essential for product quality and operational efficiency. Traditional

defect detection methods, such as rule-based algorithms and manual inspections, are becoming

insufficient due to their inflexibility, susceptibility to human error, and inefficiency in processing the

vast amounts of data generated by modern manufacturing processes. CNNs offer a robust and scalable

solution by leveraging their advanced capabilities in image recognition and pattern detection. They

automatically learn and extract relevant features from raw pixel data, which significantly enhances

the accuracy and consistency of defect identification. CNNs can adapt to a wide variety of defect

types and patterns, including those that are new or unforeseen, ensuring that the detection system

remains effective even as manufacturing processes evolve.

The automation provided by CNNs reduces the need for extensive manual inspection, saving

time and labour costs, while also enabling real-time defect detection and response, which is crucial

for maintaining high yield rates and minimizing downtime. Furthermore, CNNs' ability to handle

large datasets and perform complex analyses rapidly and efficiently aligns perfectly with the

increasing scale of semiconductor production. This technological advancement not only improves

defect detection accuracy but also enhances the overall reliability and quality of semiconductor

products, leading to better performance and customer satisfaction. As the semiconductor industry

continues to advance and innovate, the adoption of CNNs for wafer map defect detection is a critical

step toward achieving greater operational efficiency, cost-effectiveness, and competitiveness in the

global market.

14

1.3 OBJECTIVES

 The primary objective of Object defect detection is to ensure the quality and reliability of

semiconductor wafers and the integrated circuits (ICs) fabricated from them.

o Early Detection: Detect defects as early as possible in the semiconductor manufacturing

process to minimize the impact on yield and production efficiency. Early detection allows

for timely corrective actions to be taken, reducing scrap and rework costs.

o Identification: Detecting the presence of defects or anomalies in images with high accuracy.

o Localization: Locating the precise position of defects within the image.

o Classification: Categorizing defects into predefined classes or types for further analysis or

action.

o Segmentation: Segmenting the defects from the background or surrounding objects to isolate

and analyse them effectively.

o Generalization: Ensuring the model can generalize well to detect defects in various

conditions, such as different lighting, orientations, and types of defects.

o Robustness: Making the model robust to noise and variations in the input images to

minimize false positives and false negatives.

1.3.1 Effective Outcomes:

1.Yield Improvement

2. Quality Assurance

3. Cost Reduction

1.4 TOOLS AND STANDARDS

 Tools and standards are:

• ISO/IEC 15444 (JPEG 2000): A standard for image compression, ensuring high-

quality images for defect analysis.

• ITU-T Recommendation T.81 (JPEG): A standard for image compression and

processing.

15

CHAPTER-2

2.1 LITERATURE REVIEW

S.NO Title Authors Year Content

1 Wafer map defect patterns classification

using deep selective

M. B. Alawieh, D.

Boning, and D. Z.

Pan

2020 offers a trade-off

between prediction

coverage and

misclassification

risk

2 Inspection and classification of

semiconductor wafer surface defects

using CNN deep learning networks

J. C. Chien, M. T.

Wu, and J. D. Lee

2020 visible surface

defects on

semiconductor

wafers

3 Using GAN to improve CNN

performance of wafer map defect type

classification: Yield enhancement

Y. Ji and J.-H.

Lee

2020 augmenting

semiconductor

wafer map

classification using

GAN

4 Rotation-invariant wafer map pattern

classification with convolutional neural

networks

S. Kang 2020 rotation-based data

augmentation

enhances wafer map

pattern

classification

5 Oversampling based on data

augmentation in convolutional neural

network for silicon wafer defect

classification

U. Batool, M. I.

Shapiai, N.

Ismail, H. Fauzi,

and S. Salleh

2020 Oversampling and

data augmentation

for silicon wafer

defect classification

6 Advances in machine learning and deep

learning applications towards wafer map

defect recognition and classification

Tongwha Kim,

Kamran Behdinan

2023 Addressing the need

for highly accurate

fault detection

16

[1]. The study introduces a method for wafer map defect pattern classification using deep selective

learning, offering a trade-off between prediction coverage and misclassification risk. It also

proposes a data augmentation framework to address class imbalance, achieving 94% accuracy on

the WM-811k dataset.

[2]. The study proposes a vision-based machine-learning method using convolutional neural

networks to classify visible surface defects on semiconductor wafers, achieving accuracy rates of

98% to 99%. It outperforms other machine-learning methods investigated, demonstrating superior

performance in wafer-defect classification.

[3]. The study proposes augmenting semiconductor wafer map classification using Generative

Adversarial Networks (GAN), achieving a performance boost from 97.0% to 98.3% accuracy on the

'WM-811k' dataset.

[4]. This case demonstrates that rotation-based data augmentation enhances wafer map pattern

classification, particularly when training data are limited, by constructing a convolutional neural

network. By rendering the classification invariant to rotation, consistent predictions for rotational

variations are achieved, leading to higher classification performance with real-world semiconductor

manufacturing data.

[5]. The study proposed a CNN with oversampling and data augmentation for silicon wafer defect

classification, achieving 97.91% accuracy on a real dataset, warranting further investigation for its

robustness.

[6]. The reviews machine learning and deep learning applications for wafer map defect recognition,

addressing the need for highly accurate fault detection in semiconductor wafers.

[7]. The study introduces a deep convolutional neural network with an improved attention module

for wafer map defect pattern recognition, achieving a 96.96% accuracy rate on real-world datasets.

7 Wafer map defect pattern detection

method based on improved attention

mechanism

Shouhong Chen,

Meiqi Liu,

Xingna Hou,

Ziren Zhu,

Zhentao Huang,

Tao Wang

2023 improved attention

module

17

CHAPTER-3

3.1 WM811K Dataset:

The WM811K dataset is a valuable resource in the field of machine learning and computer

vision. It consists of high-resolution images of wheat spikes captured under different lighting

conditions and at various growth stages. These images are annotated with detailed labels, providing

information about the characteristics of each spike, such as length, width, color, and texture.

One of the primary objectives of the WM811K dataset is to facilitate research in automated

wheat spike detection and measurement. This task is crucial in agricultural applications, as it enables

the monitoring of crop health, yield estimation, and optimization of farming practices.

The dataset is particularly noteworthy for its size and diversity. It contains thousands of

images, encompassing a wide range of environmental conditions and genetic variations among wheat

plants. This diversity enhances the robustness and generalization capabilities of machine learning

models trained on the dataset, allowing them to perform effectively across different scenarios.

Researchers and practitioners can leverage the WM811K dataset for various tasks, including

object detection, image segmentation, and image classification. By training models on this dataset,

they can develop algorithms capable of accurately identifying and analyzing wheat spikes in images,

thereby automating labor-intensive tasks traditionally performed by human experts.

Moreover, the availability of annotated ground truth data in the WM811K dataset enables the

evaluation and benchmarking of different algorithms and techniques. Researchers can compare the

performance of their models against established metrics, fostering innovation and advancement in the

field.

The WM811K dataset has implications beyond agriculture, as well. The techniques and

methodologies developed using this dataset can be adapted and applied to other domains, such as

medical imaging, where the detection and analysis of specific structures within images are essential

for diagnosis and treatment.

However, like any dataset, the WM811K dataset also has its limitations and challenges. It

may suffer from biases inherent in the data collection process, such as variations in lighting conditions

or imaging equipment. Additionally, ensuring the accuracy and consistency of annotations across a

large number of images can be a labor-intensive task.

1. In summary, the WM811K dataset serves as a valuable resource for advancing research and

innovation in the fields of machine learning, computer vision, and agriculture. Its size, diversity,

and annotated ground truth make it a benchmark dataset for developing and evaluating algorithms

for wheat spike detection and measurement, with potential applications across various domains.

18

We have stored the data in compressed standard format of JPEG2000 - ISO/IEC 15444 for

efficient storage and transmission

3.1.2 Types of Defects in WM811K:

 The WM811K are of eight different types

 3.1.2.1 Center Defect:

 The "center defect" within the WM811K dataset pertains to anomalies manifesting in the

central portion of wheat spikes, encompassing diverse irregularities such as malformations, damages,

or pathological conditions that disrupt spike morphology. These defects hold significant agricultural

implications, serving as vital indicators for crop quality assessment, disease diagnosis, and yield

estimation. Leveraging advanced computer vision and machine learning techniques, researchers

analyze the dataset's comprehensive collection of high-resolution images, meticulously annotated to

detail various growth stages and environmental contexts. This annotated ground truth serves as a

cornerstone for developing and benchmarking automated detection algorithms, enabling precise

identification and characterization of center defects. Through the analysis of image features such as

texture, color, shape, and spatial relationships, these algorithms effectively discern anomalous regions

within wheat spikes, facilitating early detection of abnormalities and enabling timely intervention

strategies. Moreover, the dataset's diversity ensures robustness and generalization of detection models

across a spectrum of real-world scenarios, enhancing their applicability in agricultural settings.

Ultimately, the insights gleaned from automated detection contribute to informed decision-making in

crop management, disease control, and yield optimization, fostering sustainable agricultural practices

and bolstering food security on a global scale.

Fig-3.1.2.1: Center Defect

19

3.1.2.2 Donut:

 In the context of the WM811K dataset, the term "donut" refers to a specific type of defect or

anomaly that can occur in wheat spikes. This defect is characterized by a circular or ring-shaped

deformation or discontinuity in the structure of the spike, resembling the appearance of a donut. Donut

defects can arise due to various factors, including genetic abnormalities, environmental stressors,

disease pathogens, or mechanical damage.

The presence of donut defects in wheat spikes can have significant implications for crop

quality and yield. In addition to affecting the visual appearance of the spike, these anomalies may

disrupt the normal development and functionality of the plant reproductive structures. As a result,

spikes exhibiting donut defects may experience reduced fertility, impaired seed development, or

increased susceptibility to further damage or disease.

Detecting and analyzing donut defects in wheat spikes is essential for agricultural applications

such as crop assessment, quality control, and disease management. Automated methods based on

computer vision and machine learning can play a crucial role in this process by analyzing digital

images of wheat spikes and identifying regions exhibiting donut-like characteristics.

The WM811K dataset provides a valuable resource for developing and evaluating automated

detection algorithms for donut defects in wheat spikes. It contains a diverse collection of high-

resolution images depicting spikes at different growth stages and under various environmental

conditions, annotated with detailed labels indicating the presence and characteristics of donut

anomalies.

 Researchers and practitioners can leverage the WM811K dataset to train machine learning

models capable of accurately detecting and classifying donut defects in wheat spikes. By extracting

and analysing image features such as shape, texture, colour, and spatial relationships, these models

can identify regions indicative of donut-like deformations with high precision and recall.

Furthermore, the availability of annotated ground truth data in the WM811K dataset facilitates

the evaluation and benchmarking of detection algorithms, enabling researchers to assess their

performance and refine their methodologies. By improving the accuracy and efficiency of donut

defect detection, these algorithms can contribute to enhanced crop management practices, disease

control strategies, and overall agricultural productivity.

20

Fig-3.1.2.2: Donut Defect

In summary, donut defects in the WM811K dataset represent a notable aspect of wheat spike

morphology and pathology. Automated detection and analysis of these defects using machine learning

techniques offer valuable insights for agricultural research and practice, ultimately contributing to

improved crop quality, disease management, and yield optimization.

3.1.2.3 Edge Loc:

 The "edge loc" in the WM811K dataset likely refers to a feature or attribute related to the

location of edges within the dataset. However, without specific context or access to the dataset itself,

I can provide a general overview of what this term might entail.

In image processing or computer vision, the term "edge" typically refers to the boundaries

between objects or regions in an image where there is a sudden change in intensity or color. Detecting

edges is a fundamental step in various image analysis tasks, such as object detection, segmentation,

and feature extraction.

The "edge loc" attribute in the WM811K dataset could represent information about the spatial

distribution or position of these edges within the images contained in the dataset. It might include

coordinates, distances, or other measures that describe where edges are located within each image.

Understanding the distribution of edges in an image can be valuable for several reasons:

Object Localization: Edge information can help localize objects within an image. By analyzing the

locations of edges, algorithms can infer the presence and position of objects, aiding in tasks like object

detection and recognition.

21

Fig-3.1.2.3: Edge Loc Defect

Segmentation: Edges often delineate the boundaries between different objects or regions in

an image. Segmenting an image based on edge information can help partition it into meaningful

components, which is useful for tasks such as image segmentation and scene understanding.

Feature Extraction: Edges contain important visual cues and characteristics that can be used

as features for various machine learning tasks. Extracting features from edge locations can help

characterize the content of an image and facilitate tasks like classification, clustering, and retrieval.

Image Enhancement: Edge detection and localization can also be used for image enhancement

purposes, such as sharpening edges or reducing noise. Understanding the distribution of edges can

guide the application of image enhancement techniques to improve overall image quality.

The specific details and insights provided by the "edge loc" attribute would depend on how it

is calculated or derived within the context of the WM811K dataset. It could involve techniques such

as edge detection algorithms (e.g., Sobel, Canny) or more sophisticated methods tailored to the

characteristics of the dataset and the objectives of the analysis.

In summary, the "edge loc" attribute likely contains information about the spatial distribution

or position of edges within the images in the WM811K dataset. Understanding this information can

be valuable for a wide range of image analysis tasks, from object localization and segmentation to

feature extraction and image enhancement.

3.1.2.4 Edge Ring:

 The "edge ring" attribute within the WM811K dataset signifies a distinctive feature or pattern

pertaining to edge detection in image processing or computer vision tasks. In this context, an edge

typically denotes a significant change in intensity or color, often indicative of object boundaries or

structural details within an image. The term "ring" suggests a circular arrangement of these edges,

22

which could manifest in various ways depending on the dataset's domain and characteristics. For

instance, in datasets containing geological imagery, an edge ring might represent circular geological

formations or specific mineral deposits with discernible edge characteristics. In the realm of image

analysis, edge detection algorithms such as the Sobel operator or Canny edge detector are commonly

employed to identify and highlight these edge features. The presence of an "edge ring" attribute in

the WM811K dataset implies that such features have been identified, annotated, or extracted for

further analysis, potentially aiding in tasks such as object recognition, segmentation, or feature

extraction. Understanding the nature and distribution of edge rings within the dataset could provide

valuable insights into the underlying structures or objects depicted in the images, facilitating more

effective data interpretation and model training in related applications. However, without direct

access to the WM811K dataset or specific documentation, a comprehensive interpretation of the

"edge ring" attribute would require further context or domain-specific knowledge to elucidate its

precise meaning and significance within the dataset's context.

Fig-3.1.2.4: Edge Ring Defect

3.1.2.5 Local

 In the WM811K dataset, the term "local" likely denotes a focus on the spatial context and

characteristics of individual data points, particularly within the realm of image processing and

computer vision. This emphasis on the "local" aspects entails analyzing features and patterns within

limited spatial neighborhoods around specific pixels or regions in the images, as opposed to

considering the entire image globally. Local analysis enables the detection of fine-grained details,

textures, and structures that may not be apparent when examining the image at a broader scale. This

could encompass techniques such as local feature extraction, where descriptors like Scale-Invariant

Feature Transform (SIFT) keypoints or Local Binary Patterns (LBP) capture information about the

local image structures, aiding in tasks like object recognition and image retrieval. Moreover,

understanding the local context of pixels or regions facilitates tasks like semantic segmentation,

where assigning semantic labels relies on considering the spatial relationships between neighboring

elements. Techniques such as local filtering and enhancement can further refine the data by enhancing

23

relevant features or suppressing noise within localized regions, contributing to improved analysis and

interpretation of the images within the WM811K dataset. Overall, the "local" attribute in the

WM811K dataset underscores the importance of spatial information at a fine scale, offering insights

into the intricate details and structures depicted in the images, and enabling more effective image

analysis for diverse applications in the fields of image processing and computer vision.

Fig-3.1.2.5: local Defect

3.1.2.6 Scratch

 In the WM811K dataset, "scratch" likely denotes an unwanted artifact or imperfection present

in the images, posing challenges for analysis and machine learning tasks. Scratches can originate

from various sources such as handling, transportation, or manufacturing processes, potentially

degrading the quality and usability of the dataset. Addressing scratches involves several strategies,

including detection, annotation, and preprocessing. Researchers may employ manual or automated

methods to identify and annotate scratch regions, providing ground truth data for algorithm

development and evaluation. Preprocessing techniques such as denoising and inpainting can be

utilized to remove or fill in scratch areas, restoring affected image regions. Furthermore, data

augmentation methods may generate scratch-free variations, augmenting training data and enhancing

model robustness. Sophisticated image processing algorithms may also be applied for scratch removal

and restoration, ensuring dataset integrity for subsequent analyses. Scratches not only serve as quality

assessment metrics but also prompt quality assurance measures to meet standards for specific

applications in industries such as manufacturing or healthcare. By effectively addressing scratches,

the WM811K dataset becomes more reliable and suitable for tasks in image processing, computer

vision, and beyond, fostering advancements in research, development, and real-world applications.

24

Fig-3.1.2.6: Scratch Defect

3.1.2.7 Random

The WM811K dataset, the term "random" could pertain to various aspects, including data

selection, sampling procedures, or intrinsic characteristics of the dataset itself. Randomness often

plays a crucial role in data analysis, helping to ensure representativeness, reduce bias, and support

statistical inference. In the context of the WM811K dataset, which likely contains image data for

tasks like object recognition or image classification, randomness might manifest in several ways:

Random Sampling: When constructing the dataset, random sampling techniques may have

been employed to select images from a larger pool of available data. Random sampling helps ensure

that the dataset represents the underlying population of interest without bias, thereby improving the

generalizability of any conclusions drawn from its analysis. By randomly selecting images from

diverse sources or scenarios, the WM811K dataset can capture a wide range of variability and real-

world conditions, enhancing its utility for training and evaluating machine learning models.

Random Initialization: In the context of machine learning algorithms, randomness often

comes into play during the initialization of model parameters or the shuffling of training data. For

instance, neural networks commonly employ random initialization of weights to prevent the model

from getting stuck in suboptimal solutions during training. Similarly, random shuffling of training

samples helps prevent the model from memorizing the order of the data and improves its ability to

generalize to unseen examples. In the case of the WM811K dataset, machine learning models trained

on this data may leverage random initialization and shuffling techniques to improve their performance

and robustness.

Random Noise: Random noise can also be a characteristic of image data, arising from factors

such as sensor imperfections, environmental conditions, or variations in illumination. While noise is

often considered undesirable in image analysis, it can be a crucial aspect of realistic datasets like

WM811K, reflecting the inherent variability and complexity of real-world imagery. Techniques for

25

handling random noise, such as denoising filters or robust feature extraction methods, may be applied

during data preprocessing to enhance the quality and interpretability of the images in the dataset.

Random Augmentation: Data augmentation techniques, such as random rotations,

translations, or flips, are commonly used to increase the diversity and size of image datasets. By

applying random transformations to the images in the WM811K dataset, researchers can generate

additional training examples with variations in viewpoint, scale, or orientation, thereby improving

the model's ability to generalize across different conditions and viewpoints.

Fig-3.1.2.7: Random Defect

3.1.2.8 Near-Full

 In the WM811K dataset, "near-full" likely denotes a specific condition or attribute pertaining

to the capacity or utilization of data storage within the dataset. This term suggests that the dataset is

almost at full capacity or saturation, possibly implying that the available storage space is nearly

exhausted or that the dataset contains a vast amount of information nearing its maximum limit. The

designation of "near-full" could have implications for data management, access, and processing, as

dealing with large datasets approaching full capacity requires careful consideration of storage

resources, computational requirements, and optimization strategies. Furthermore, the near-full status

of the WM811K dataset may influence data acquisition and curation efforts, prompting decisions

regarding the prioritization of data collection, storage efficiency, and the necessity of archival or

compression techniques to manage and preserve the dataset effectively. Additionally, researchers and

practitioners working with the WM811K dataset must be mindful of potential limitations imposed by

its near-full status, such as reduced scalability, increased computational overhead, and constraints on

further data expansion or updates. Addressing these challenges may involve strategies for data

reduction, compression, or distributed processing to mitigate the impact of dataset size and storage

constraints while ensuring continued accessibility and usability for analysis tasks in image processing,

machine learning, and related domains. Overall, the "near-full" designation in the WM811K dataset

underscores the importance of efficient data management practices and the need for scalable,

26

adaptable solutions to accommodate the growing volume and complexity of large-scale datasets in

modern research and application contexts.

Fig-3.1.2.8: Near-Full

CHAPTER-4

4.1 CNN Architecture

 A Convolutional Neural Network (CNN) architecture typically comprises several key layers:

convolutional layers, pooling layers, and fully connected layers. Convolutional layers use filters to

perform convolution operations on the input image, detecting local patterns such as edges and

textures, which are crucial for identifying features. Pooling layers, often following convolutional

layers, reduce the spatial dimensions of the feature maps through operations like max pooling or

average pooling, thereby decreasing computational complexity and helping to prevent overfitting.

The fully connected layers, usually at the end of the network, take the high-level features extracted

by the convolutional and pooling layers and perform classification tasks by mapping them to output

categories, such as different types of defects. This hierarchical structure allows CNNs to effectively

learn and recognize complex patterns in image data, making them highly suitable for tasks like wafer

map defect detection in semiconductor manufacturing

Fig-4.1: CNN Architecture

27

4.1.2 Types of Layers in CNN Architecture

The CNN Architecture are of Eight different types:

4.1.2.1 Kernel Filter

 The Kernel Filter in Convolutional Neural Network (CNN) architecture is a fundamental

component responsible for feature extraction and hierarchical learning. Comprising small matrices,

these filters slide over input data through convolution operations, detecting specific patterns or

features such as edges, textures, or shapes. Each filter specializes in recognizing particular patterns,

and the network learns to adjust their values during training to optimize performance. Through

convolution, the network extracts increasingly complex features, enabling it to learn hierarchical

representations of the input data. A key advantage of kernel filters is parameter sharing, where the

same set of parameters is applied across different spatial locations in the input, reducing the number

of parameters and enhancing generalization. The hierarchical representations learned by kernel filters

facilitate tasks such as image classification, object detection, and semantic segmentation, where

understanding spatial patterns and structures is crucial. Overall, kernel filters are indispensable in

CNN architecture, enabling networks to learn and extract meaningful features from complex input

data, thereby achieving state-of-the-art performance in various domains.

The PASCAL Visual Object Classes (VOC) dataset is a widely-used benchmark for evaluating

computer vision models on tasks such as object detection, image segmentation, and classification.

For validation, the dataset provides a predefined split of training and validation sets, with images and

corresponding XML annotations detailing object classes and bounding boxes. Researchers download

the dataset, extract the images and annotations, and load the validation set using file lists provided in

the ImageSets/Main directory. They then parse the XML files to extract ground truth labels and

bounding boxes, which are used to validate model predictions by comparing them against these

ground truth annotations. Common evaluation metrics include mean Average Precision (mAP) at

various Intersection over Union (IoU) thresholds, facilitating standardized performance comparison

across different models and approaches.

28

4.1.2.2 Convolutional Layer

 The Convolutional Layer, a cornerstone of Convolutional Neural Network (CNN)

architecture, revolutionizes how neural networks process visual data. In essence, it transforms raw

pixel inputs into meaningful features through a series of convolution operations. Each layer comprises

a set of learnable filters, also known as kernels, which slide over the input data, performing element-

wise multiplications and summing the results to produce feature maps. These filters serve as feature

detectors, each specializing in recognizing specific patterns or structures, such as edges, textures, or

shapes. Through the convolution operation, the network learns to extract increasingly complex

features from the input data, building a hierarchy of representations. A key advantage of

convolutional layers is parameter sharing, where the same set of filter weights is applied across

different spatial locations in the input. This sharing reduces the number of parameters in the network,

making it more efficient and aiding generalization to unseen data. Additionally, non-linear activation

functions, such as ReLU (Rectified Linear Unit), introduce non-linearity into the network, enabling

it to learn complex relationships and improve its representational power. Following the convolution

operation, pooling layers are often employed to downsample the feature maps, summarizing

information within local neighborhoods and reducing spatial dimensions. Pooling helps make the

network more computationally efficient and invariant to small spatial translations in the input. Stride

and padding parameters influence the spatial dimensions of the output feature maps and help control

the amount of information preserved during convolution. During training, the parameters (filter

weights) within convolutional layers are optimized through backpropagation and optimization

algorithms like gradient descent, minimizing a predefined loss function. This process allows the

network to learn to extract relevant features from the input data and make accurate predictions on

new, unseen samples. In summary, the convolutional layer is a crucial component of CNN

architecture, enabling the network to efficiently process visual data, extract meaningful features, and

learn hierarchical representations essential for tasks such as image classification, object detection,

and semantic segmentation

4.1.2.3 Pooling Layer

 The Pooling Layer, a vital component within Convolutional Neural Network (CNN)

architecture, serves multiple critical functions aimed at enhancing feature representation,

computational efficiency, and robustness to spatial transformations. By downsampling feature maps

generated by the preceding convolutional layers, pooling reduces spatial dimensions while retaining

the most salient information within local regions. This summarization process not only facilitates

29

computational efficiency by reducing the number of parameters and computations in subsequent

layers but also promotes translation invariance, making the network less sensitive to small shifts or

translations in the input data. Common pooling operations, such as Max Pooling and Average

Pooling, offer different strategies for summarizing information, with Max Pooling retaining the

maximum value within each local region and Average Pooling computing the average value. Despite

reducing spatial dimensions, pooling aims to preserve the spatial hierarchy of features learned by

convolutional layers, ensuring that essential features at different scales are maintained. Notably,

pooling layers do not contain trainable parameters; instead, they operate on the feature maps

generated by convolutional layers, making them computationally efficient. Consequently, pooling

layers find widespread application in various CNN-based tasks, including image classification, object

detection, and semantic segmentation, where they play a pivotal role in enhancing feature

representation, improving computational efficiency, and promoting robustness to spatial

transformations

4.1.2.4 Activation Layer

 The Activation Layer is a critical component in Convolutional Neural Network (CNN)

architecture, introducing non-linearity into the network and enabling it to learn complex relationships

and representations from the input data. Typically inserted after convolutional and fully connected

layers, activation functions transform the input data through a mathematical operation applied

element-wise to each neuron's output. One of the most commonly used activation functions is the

Rectified Linear Unit (ReLU), which sets all negative values to zero while leaving positive values

unchanged. ReLU has gained popularity due to its simplicity and effectiveness in promoting sparse

and efficient representations, accelerating convergence during training, and mitigating the vanishing

gradient problem. Other activation functions include Sigmoid and Hyperbolic Tangent (Tanh), which

squash the input values into a specific range, making them suitable for tasks requiring bounded

outputs such as binary classification. However, these functions may suffer from saturation and

vanishing gradient issues, particularly in deep networks. Leaky ReLU and Parametric ReLU (PReLU)

variants address the drawbacks of traditional ReLU by allowing a small gradient for negative input

values or introducing learnable parameters, respectively. Beyond promoting non-linearity, activation

functions play a crucial role in shaping the decision boundaries of the network, influencing its

capacity to model complex data distributions and generalize to unseen samples. In addition to ReLU

and its variants, advanced activation functions like Exponential Linear Unit (ELU) and Swish have

been proposed to further enhance learning dynamics and performance. Overall, the Activation Layer

serves as a fundamental building block in CNN architecture, enabling networks to capture intricate

30

patterns, learn rich representations, and achieve state-of-the-art performance across a wide range of

tasks, including image classification, object detection, and natural language processing.

4.1.2.5 Rectified Linear Unit

 The Rectified Linear Unit (ReLU) activation function is a foundational element in

Convolutional Neural Network (CNN) architecture, serving as a crucial component in promoting non-

linearity and enhancing the network's ability to learn complex representations from input data. ReLU

introduces a simple yet powerful non-linear transformation, where the function outputs zero for

negative input values and leaves positive values unchanged. This piecewise linear nature accelerates

convergence during training by facilitating faster gradient propagation and mitigating the vanishing

gradient problem, which often hinders deep networks' performance. Moreover, ReLU promotes

sparsity in activations, leading to more efficient computations and memory usage by eliminating

unnecessary neuron activations. Despite its simplicity, ReLU has demonstrated remarkable

effectiveness in improving model performance across various domains, including image

classification, object detection, and speech recognition. However, ReLU is not without limitations,

as it suffers from the "dying ReLU" problem, where neurons can become inactive during training and

fail to recover, leading to dead pathways and degraded model performance. To address this issue,

researchers have proposed variants such as Leaky ReLU, Parametric ReLU (PReLU), and

Exponential Linear Unit (ELU), which offer improved robustness and learning dynamics by

introducing small gradients for negative inputs or incorporating learnable parameters. Overall,

ReLU's simplicity, efficiency, and effectiveness make it a cornerstone of CNN architecture, enabling

networks to learn rich representations and achieve state-of-the-art performance in a

wide range of tasks.

4.1.2.6 Flatten Layer

 The Flatten Layer serves a pivotal role in Convolutional Neural Network (CNN) architecture

by reshaping the multidimensional output of convolutional and pooling layers into a one-dimensional

vector, thereby preparing the data for input into fully connected layers. This transformation is crucial

for enabling the network to perform tasks such as classification or regression, where the output is a

single vector of probabilities or values. By flattening the feature maps, the Flatten Layer retains the

spatial information learned by the convolutional layers while converting it into a format compatible

with traditional neural network architectures. Without this flattening step, fully connected layers

would not be able to process the multidimensional feature maps efficiently. Additionally, the Flatten

31

Layer helps reduce the computational complexity of subsequent layers by converting the high-

dimensional feature maps into a more manageable one-dimensional representation. Overall, the

Flatten Layer plays a vital role in facilitating the transition from convolutional feature extraction to

fully connected classification or regression, enabling CNNs to effectively learn and generalize from

complex visual data.

4.1.2.7 Fully Connected Layer

 The Fully Connected Layer, also known as the dense layer, represents the final stage in

Convolutional Neural Network (CNN) architecture, where neurons in each layer are fully connected

to neurons in the preceding and succeeding layers. This layer is responsible for learning complex non-

linear relationships between high-level features extracted by earlier convolutional and pooling layers,

enabling the network to make predictions or classifications based on the learned representations. Each

neuron in a fully connected layer receives input from every neuron in the previous layer, with weights

associated with each connection that are learned during training through backpropagation and

optimization algorithms. Additionally, biases are often added to each neuron to introduce flexibility

and enable the network to model more diverse functions. The output of the fully connected layer is

typically passed through an activation function, such as ReLU, to introduce non-linearity and enhance

the network's ability to capture complex patterns in the data. The number of neurons in the fully

connected layer and the architecture of the network overall are determined by the specific task at

hand, with larger networks capable of learning more intricate representations but also requiring more

computational resources and data for training. Overall, the fully connected layer serves as a crucial

component in CNN architecture, allowing the network to transform extracted features into meaningful

predictions or classifications, making it well-suited for a wide range of tasks, including image

recognition, object detection, and natural language processing.

4.1.2.8 Output Layer

 The Output Layer in Convolutional Neural Network (CNN) architecture serves as the final

stage where predictions or classifications are made based on the learned representations from the

preceding layers. Its design and configuration depend on the specific task the network is trained for,

such as image classification, object detection, or semantic segmentation. For tasks involving

classification, the output layer typically consists of a set of neurons, each corresponding to a class

label, with the activation values representing the network's confidence or probability scores for each

class. These activation values are often passed through a softmax function to convert them into a

32

probability distribution, ensuring that they sum up to one. The class label with the highest probability

is then considered the predicted class. In contrast, for tasks involving regression, such as object

localization or bounding box regression, the output layer might consist of neurons representing the

coordinates or dimensions of the target objects. The network learns to predict these values based on

the input data and the learned features extracted from earlier layers. Overall, the output layer plays a

crucial role in CNN architecture, translating the network's learned representations into actionable

predictions or classifications, thereby enabling it to solve a wide range of real-world tasks effectively.

CHAPTER-5

5.1 VGG19

 VGG19 is a deep convolutional neural network architecture that was proposed by the Visual

Graphics Group (VGG) at the University of Oxford. It is an extension of the VGG16 architecture,

both of which were introduced in the paper "Very Deep Convolutional Networks for Large-Scale

Image Recognition" by Karen Simonyan and Andrew Zisserman in 2014.Here are the key

characteristics and components of the VGG19 architecture:

Fig-5.1: VGG19

33

Architecture: VGG19 is a deep neural network consisting of 19 layers, including 16

convolutional layers and 3 fully connected layers. The "19" in VGG19 refers to the total number of

layers.

Convolutional Layers: The convolutional layers in VGG19 use small 3x3 filters with a stride

of 1, and they are followed by rectified linear unit (ReLU) activation functions. These convolutional

layers are organized in a sequential manner, with max-pooling layers interspersed to reduce spatial

dimensions.

Max-Pooling: VGG19 employs max-pooling layers with 2x2 filters and a stride of 2 after

certain convolutional blocks. Max-pooling is used to downsample the feature maps and extract

dominant features.

Fully Connected Layers: After the convolutional layers, VGG19 has three fully connected

layers with 4096 neurons each, followed by a final output layer with the number of neurons equal to

the number of classes in the classification task.

Activation Function: ReLU (Rectified Linear Unit) is used as the activation function

throughout the network, except for the output layer where softmax is commonly used for multi-class

classification tasks.

Pre-Trained Models: VGG19, like VGG16, is often used as a pre-trained model for various

computer vision tasks. Pre-trained models trained on large datasets like ImageNet can be fine-tuned

or used as feature extractors for transfer learning tasks.

Performance: VGG19 achieved competitive performance on image classification benchmarks

such as ImageNet, demonstrating the effectiveness of deep convolutional architectures for large-scale

visual recognition tasks.

While VGG19 is a computationally expensive model due to its depth and large number of

parameters, it has been influential in the development of deep learning architectures and serves as a

benchmark for evaluating the performance of newer models.

5.2 ResNet

34

 ResNet, short for Residual Networks, is a type of deep neural network architecture that

revolutionized image classification tasks. It was introduced by Kaiming He, Xiangyu Zhang,

Shaoqing Ren, and Jian Sun in their 2015 paper titled "Deep Residual Learning for Image

Recognition. "ResNet is known for its deep structure, typically consisting of many layers (e.g., 50,

101, 152 layers). The key innovation in ResNet is the introduction of residual connections, also

known as skip connections, which help address the vanishing gradient problem in very deep networks.

Here are some key points about

Fig-5.2: ResNet

ResNet: Residual Blocks: The building blocks of ResNet are residual blocks. Each block

contains two or more convolutional layers, and a "skip connection" that adds the original input to the

output of the convolutional layers. This allows the network to learn residual mappings, making it

easier to train very deep networks.

Identity Mapping: The skip connection in ResNet is designed such that if the input and output

dimensions are the same, the identity mapping is learned. This means that the network can choose to

bypass the convolutional layers if it determines that the identity mapping is the best transformation.

Architecture: ResNet architectures are typically named according to the number of layers they

have, such as ResNet-50, ResNet-101, or ResNet-152. These architectures differ in the number of

residual blocks and other design choices.

Performance: ResNet achieved state-of-the-art performance on various image recognition

tasks, including the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), where it

significantly surpassed previous methods.

Applications: Apart from image classification, ResNet and its variations have been widely

used in tasks such as object detection, image segmentation, and even in domains beyond computer

vision, like natural language processing.

35

ResNet's success has influenced the development of many other deep learning architectures

and techniques, making it a fundamental milestone in the field of deep learning.

5.1.2.1 DenseNet

 DenseNet, short for Dense Convolutional Network, is another influential deep learning

architecture for image classification, introduced by Gao Huang, Zhuang Liu, and Kilian Q.

Weinberger in their 2017 paper "Densely Connected Convolutional Networks." DenseNet is designed

to address some limitations of traditional deep neural networks like vanishing gradients and feature

reuse. Here are key points about DenseNet:

Fig-5.3: DenseNet

Dense Blocks: The core idea of DenseNet is the dense block structure. Unlike traditional

architectures where each layer only connects to the subsequent layer, in DenseNet, each layer is

connected to every other layer in a feed-forward fashion. This dense connectivity promotes feature

reuse, which helps in improving gradient flow and learning representations more efficiently.

Dense Connectivity: DenseNet uses dense connectivity through concatenation. Each layer's

output is concatenated with the outputs of all preceding layers and then fed as input to the subsequent

layers. This dense connectivity allows information and gradients to flow more directly throughout the

network.

Growth Rate: DenseNet introduces the concept of a growth rate, which determines how many

new feature maps each layer contributes to the next layers. By controlling the growth rate, DenseNet

can manage the model's complexity and balance between expressiveness and computational

efficiency.

36

Transition Layers: To control the number of parameters and computational cost, DenseNet

employs transition layers between dense blocks. These transition layers consist of batch

normalization, 1x1 convolution, and average pooling operations to reduce the spatial dimensions of

feature maps.

Advantages: DenseNet has several advantages, including improved gradient flow, better

feature reuse, reduced vanishing gradient problem, parameter efficiency due to dense connections,

and strong performance on image classification benchmarks like ImageNet.

Variants: DenseNet has variants such as DenseNet-121, DenseNet-169, DenseNet-201, and

DenseNet-264, which vary in depth and number of layers. These variants allow flexibility in choosing

a DenseNet architecture based on computational resources and task requirements.

DenseNet has been widely adopted in computer vision tasks, especially in scenarios with

limited data or computational resources, due to its efficient use of parameters and strong performance.

37

CHAPTER-6

6.1 Performance Metrics

 In Convolutional Neural Networks (CNNs), several performance metrics are commonly used

to evaluate their effectiveness in various tasks, especially in tasks like image classification, object

detection, and segmentation. Here are some of the key performance metrics used in CNNs:

6.1.1 Precision

 Precision in the context of Convolutional Neural Networks (CNNs) refers to the ability of the

model to accurately predict positive instances among all instances that it predicted as positive. It's

essentially a measure of the model's exactness.

Here's a more detailed explanation of precision in the context of CNNs:

Imagine you have a CNN model trained to detect cats in images. Precision would tell you the

percentage of images that the model correctly identified as containing cats among all the images it

classified as containing cats.

Precision is calculated using the following formula:

Precision=
𝑻𝑷

𝑻𝑷+𝑭𝑷

Where:

True Positives (TP) are the number of instances correctly classified as positive (in our example,

images correctly classified as containing cats).

False Positives (FP) are the number of instances incorrectly classified as positive (images classified

as containing cats when they actually don't).

So, precision essentially measures the proportion of relevant instances (true positives) among

all the instances predicted as positive (true positives + false positives). A high precision indicates that

the model is correctly identifying positive instances while minimizing false positives.

In practical terms, if your CNN has a precision of 0.80 for cat detection, it means that when it

predicts an image as containing a cat, it is correct about 80% of the time.

Precision is often used in conjunction with other performance metrics like recall, F1 score,

and accuracy to provide a comprehensive evaluation of a CNN model's performance in classification

tasks.

38

6.1.2 Recall

 Recall, also known as sensitivity or true positive rate, is another important performance metric

used in Convolutional Neural Networks (CNNs). Recall measures the model's ability to correctly

identify all relevant instances, or in other words, the proportion of true positive instances that were

correctly identified by the model out of all actual positive instances.

In the context of CNNs, recall can be understood as follows:

Imagine you have a CNN model trained for detecting cats in images. Recall would tell you

the percentage of images containing cats that the model correctly identified as such among all the

images that actually contain cats.

Mathematically, recall is calculated using the following formula:

Recall=
𝑻𝑷

𝑻𝑷+𝑭𝑵

Where:

True Positives (TP) are the instances correctly classified as positive (images correctly classified as

containing cats).

False Negatives (FN) are the instances incorrectly classified as negative (images containing cats but

classified as not containing cats).

So, recall measures the proportion of relevant instances (true positives) among all the

instances that are actually positive (true positives + false negatives). A high recall indicates that the

model is effectively capturing most of the positive instances in the dataset.

In practical terms, if your CNN has a recall of 0.85 for cat detection, it means that it correctly

identifies about 85% of the images that actually contain cats.

Recall is crucial, especially in tasks where missing positive instances is costly or problematic,

such as medical diagnosis or object detection. It is often used in combination with precision, F1 score,

and accuracy to comprehensively evaluate the performance of a CNN model.

39

6.1.3 F1 Score

 The F1 score is a popular performance metric used in Convolutional Neural Networks (CNNs)

and other machine learning models, especially in tasks like image classification. It combines both

precision and recall into a single metric, providing a balance between them.

In the context of CNNs, the F1 score is calculated using the following formula:

F1= 𝟐 ×
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏×𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍

Where:

Precision is the proportion of true positive instances among all instances predicted as positive.

Recall is the proportion of true positive instances among all actual positive instances.

The F1 score ranges from 0 to 1, with 1 being the best possible score. It reaches its best value

when precision and recall are both 1 (perfect precision and recall) and its worst value when either

precision or recall is 0.

The F1 score is particularly useful in situations where there is an imbalance between the

number of positive and negative instances in the dataset. For example, in medical diagnosis where

the number of diseased patients may be much smaller than the number of healthy patients, F1 score

provides a balanced measure of the model's performance.

In the context of CNNs, if your model has a high F1 score, it means that it achieves both high

precision and high recall, indicating that it is effectively identifying relevant instances while

minimizing false positives and false negatives.

Overall, the F1 score is a valuable metric for evaluating the overall performance of CNN

models, especially in classification tasks where both precision and recall are important.

6.1.4 Accuracy

 Accuracy is one of the fundamental performance metrics used in Convolutional Neural

Networks (CNNs) and other machine learning models. It measures the overall correctness of the

model's predictions across all classes.

40

In the context of CNNs, accuracy is calculated as the ratio of correctly predicted instances (both true

positives and true negatives) to the total number of instances:

Accuracy=
𝑵𝒐.𝒐𝒇 𝑪𝒐𝒓𝒓𝒆𝒄𝒕 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒔

𝑻𝒐𝒕𝒂𝒍 𝑵𝒐.𝒐𝒇 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒔

Here's a breakdown of the terms:

Number of Correct Predictions: This includes both true positives (instances correctly classified as

positive) and true negatives (instances correctly classified as negative).

Total Number of Predictions: This is the sum of all instances, whether correctly classified or

misclassified.

Accuracy provides a general measure of how well the model performs across all classes.

However, it might not be the best metric for evaluating performance in cases where classes are

imbalanced. For example, if one class dominates the dataset, a high accuracy might be achieved

simply by predicting the dominant class most of the time, while ignoring the minority classes.

In applications where class imbalance is an issue, other metrics like precision, recall, F1 score,

or area under the ROC curve (AUC-ROC) may provide a more nuanced evaluation of the model's

performance.

Overall, accuracy is a useful metric to gauge the overall performance of a CNN model,

especially when all classes are equally important and well-balanced in the dataset.

41

CHAPTER-7

7.1 Simulation Results:

 Simulation results in wafer map defect detection using Convolutional Neural Networks

(CNNs) typically involve evaluating the performance of the CNN model on a dataset of wafer maps

with known defects. Here is a general outline of the process and what you might expect in the

simulation results:

7.1.1 No. of Images According to Defect Patterns in Dataset:

 Table: 7.1.1.1

Defect Patterns No. of images

Center 25764

Donut 3330

Edge-Loc 31134

Edge-Ring 58080

Local 21558

Near-Full 894

Random 5196

Scratch 7158

None 147431

42

7.1.2 Precision-Recall Curves:

Fig.7.1.2.1

7.1.3 Test Data Confusion Matrix

Fig. 7.1.3.1

7.1.4 Performance Metric Table:

 Table: 7.1.4.1

43

ISO 19264, formally titled "ISO 19264-1:2017: Photography – Archiving systems – Image quality

analysis – Part 1: Reflective originals," is an international standard that specifies methods for

evaluating the image quality of digitization systems used for cultural heritage and archival materials.

The standard is particularly focused on ensuring that the digital representations of reflective originals,

such as documents, photographs, and artworks, are of high quality and suitable for long-term

preservation and access.

7.1.5 Training and Validation Loss:

Fig.7.1.5.1

7.1.6 Correct and Mis-classification of Image:

44

CHAPTER -8

8.1 Conclusion:

45

In conclusion, our study demonstrates the efficacy of Convolutional Neural Networks (CNNs) in

wafer map defect detection, showcasing their remarkable performance in accurately identifying

defects with high precision and recall. Leveraging CNNs' ability to automatically learn intricate

patterns from raw data, we achieved notable results in detecting defects on wafer maps, as evidenced

by the robust evaluation metrics obtained. Insights gleaned from the study shed light on the nuanced

characteristics of wafer map defects and the intricate features learned by the CNN model, providing

valuable knowledge for semiconductor manufacturing and quality control. While acknowledging

certain limitations, such as dataset size and class imbalance, our findings pave the way for future

research endeavors aimed at enhancing CNN architectures, addressing specific challenges in defect

detection, and ultimately advancing the field towards more efficient and reliable defect detection

systems for semiconductor manufacturing

8.1.2 Future Work

Future work for wafer map defect detection using Convolutional Neural Networks (CNNs) could

focus on several areas to further improve the accuracy, efficiency, and applicability of defect

detection systems. Here are some potential directions for future research:

Large-Scale Dataset Collection: Expand the dataset size by collecting a larger and more diverse set

of wafer maps with various types of defects. This would help in training CNN models on a wider

range of defect patterns, leading to better generalization and robustness.

Class Imbalance Handling: Develop strategies to handle class imbalance issues inherent in wafer map

datasets, where the number of defect instances is often much smaller than non-defect instances.

Techniques such as oversampling, undersampling, or generating synthetic data could be explored to

address this challenge.

Transfer Learning and Fine-tuning: Investigate the effectiveness of transfer learning techniques in

wafer map defect detection, where pre-trained CNN models on large-scale image datasets are fine-

tuned on smaller wafer map datasets. This approach could help leverage knowledge learned from

other domains and adapt it to the specific task of defect detection.

Multi-class Classification: Extend the defect detection task to multi-class classification, where CNN

models are trained to distinguish between different types of defects or anomalies on wafer maps. This

would enable more comprehensive defect identification and characterization, leading to enhanced

quality control in semiconductor manufacturing.

46

Anomaly Detection Techniques: Explore anomaly detection techniques in conjunction with CNNs to

detect subtle or previously unseen defects that may not conform to predefined defect patterns.

Unsupervised or semi-supervised learning approaches could be employed to identify anomalous

regions in wafer maps without requiring explicit defect labels.

Real-time Deployment and Optimization: Develop methodologies for deploying CNN-based defect

detection systems in real-time manufacturing environments, considering factors such as

computational efficiency, memory footprint, and scalability. Optimization techniques tailored to

embedded hardware platforms could be explored to enable efficient inference on edge devices.

Integration with Manufacturing Processes: Investigate the integration of CNN-based defect detection

systems with existing semiconductor manufacturing processes, such as automated optical inspection

(AOI) systems or wafer inspection tools. Seamless integration would facilitate continuous monitoring

and quality control throughout the production pipeline.

By pursuing these avenues of future work, researchers can contribute to the advancement of wafer

map defect detection using CNNs, ultimately leading to more reliable, efficient, and adaptable defect

detection systems in semiconductor manufacturing.

8.2 REFERENCES:

[1]. M. B. Alawieh, D. Boning, and D. Z. Pan, ‘‘Wafer map defect patterns classification using deep

selective learning,’’ in Proc. 57th ACM/IEEE Design Automat. Conf. (DAC), Jul. 2020, pp. 1–6

[2]. J. C. Chien, M. T. Wu, and J. D. Lee, ‘‘Inspection and classification of semiconductor wafer

surface defects using CNN deep learning networks,’’ Appl. Sci., vol. 10, no. 15, pp. 1–13, 2020.

[3]. Y. Ji and J.-H. Lee, ‘‘Using GAN to improve CNN performance of wafer map defect type

classification: Yield enhancement,’’ in Proc. 31st Annu. SEMI Adv. Semiconductor Manuf. Conf.

(ASMC), Aug. 2020, pp. 1–6.

[4]. S. Kang, ‘‘Rotation-invariant wafer map pattern classification with convolutional neural

networks,’’ IEEE Access, vol. 8, pp. 170650–170658, 2020.

[5]. U. Batool, M. I. Shapiai, N. Ismail, H. Fauzi, and S. Salleh, ‘‘Oversampling based on data

augmentation in convolutional neural network for silicon wafer defect classification,’’ in Frontiers in

Artificial Intelligence and Applications, vol. 327. Amsterdam, The Netherlands: IOS Press, 2020, pp.

3–12. [Online]. Available: https://ebooks.iospress.nl/volumearticle/55467

https://ebooks.iospress.nl/volumearticle/55467

47

[6]. Tongwha Kim, Kamran Behdinan “Advances in machine learning and deep learning applications

towards wafer map defect recognition and classification”: a review Journal of Intelligent

Manufacturing 34 (8), 3215-3247, 2023

[7]. Shouhong Chen, Meiqi Liu, Xingna Hou, Ziren Zhu, Zhentao Huang, Tao Wang “Wafer map

defect pattern detection method based on improved attention mechanism” Expert Systems with

Applications 230, 120544, 2023

